login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110587
Primes p such that p^2 = 6*q + 7, where q is prime.
2
5, 7, 11, 17, 19, 29, 37, 43, 47, 53, 61, 71, 73, 79, 89, 97, 101, 107, 109, 127, 173, 191, 199, 223, 241, 251, 263, 271, 281, 317, 367, 389, 397, 433, 439, 443, 449, 457, 461, 479, 523, 541, 569, 577, 587, 613, 631, 647, 659, 677, 683, 691, 701, 739, 757
OFFSET
1,1
LINKS
FORMULA
a(n) = sqrt(A110586(n)). - Amiram Eldar, Aug 02 2024
EXAMPLE
a(4) = 17 since 17^2 = 289 = 6*47 + 7.
MAPLE
ispower := proc(n, b) andmap(proc(w) evalb(w[2] mod b = 0) end, ifactors(n)[2]) end: a:=6: SQP||a:=[]: for z from 1 to 1 do for n from 1 to 1000 do p:=ithprime(n); m:=a*p+a+1; if ispower(m, 2) and isprime(sqrt(m)) then SQPW||a:=[op(SQP||a), sqrt(m)] fi od; od; SQP||a;
MATHEMATICA
Select[Prime[Range[135]], PrimeQ[(#^2-7)/6] &] (* Amiram Eldar, Aug 02 2024 *)
PROG
(PARI) is(p) = isprime(p) && !((p^2-7) % 6) && isprime((p^2-7)/6); \\ Amiram Eldar, Aug 02 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Walter Kehowski, Sep 13 2005
STATUS
approved