login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192281
Prime numbers whose anti-divisors are all prime numbers
1
5, 7, 11, 17, 19, 29, 43, 47, 61, 71, 79, 89, 101, 107, 109, 151, 191, 197, 223, 251, 271, 317, 349, 359, 421, 439, 461, 521, 569, 601, 631, 659, 673, 691, 701, 719, 811, 821, 881, 911, 919, 947, 971, 991, 1009, 1051, 1091, 1109, 1153, 1181, 1217, 1231
OFFSET
1,1
EXAMPLE
Anti-divisors of 109 are 2, 3, 7, 31, 73 that are all prime numbers
MAPLE
with(numtheory);
P:=proc(i)
local a, b, c, k, j, n, ok;
for n from 3 by 1 to i do
j:=ithprime(n); a:={};
for k from 2 to j-1 do
if abs((j mod k)- k/2) < 1 then a:=a union {k}; fi;
od;
b:=nops(a); c:=op(a);
if b>1 then
ok:=1;
for k from 1 to b do
if (not isprime(c[k])) then ok:=0; break; fi;
od;
if ok=1 then print(j); fi;
else
if isprime(op(a)) then print(j); fi;
fi;
od;
end:
CROSSREFS
Sequence in context: A136052 A301913 A110587 * A191065 A271658 A282739
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Jul 15 2011
STATUS
approved