OFFSET
0,4
COMMENTS
For every n, the odd Catalan numbers C(2^m-1) are eventually constant mod 2^n (namely for m >= n-1): then a(n) is the asymptotic value of the remainder.
LINKS
Shu-Chung Liu and Jean C.-C. Yeh, Catalan numbers modulo 2^k, J. Int. Seq. 13 (2010), article 10.5.4.
FORMULA
a(n) = remainder(Catalan(2^m-1), 2^n) for any m >= n-1.
EXAMPLE
The odd Catalan numbers mod 2^6=64 are 1,5,45,61,29,29,29, so a(6)=29.
MAPLE
MATHEMATICA
(* first do *) Needs["DiscreteMath`CombinatorialFunctions`"] (* then *) f[n_] := Mod[ CatalanNumber[2^n - 1], 2^n]; Array[f, 25, 0] (* Robert G. Wilson v, Jun 28 2010 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
David A. Madore, Jun 18 2010
EXTENSIONS
a(12)-a(24) from Robert G. Wilson v, Jun 28 2010
a(25)-a(28) from Robert G. Wilson v, Jul 23 2010
STATUS
approved