login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178854
Asymptotic value of odd Catalan numbers mod 2^n.
1
0, 1, 1, 5, 13, 29, 29, 93, 221, 221, 733, 1757, 3805, 7901, 7901, 24285, 57053, 122589, 122589, 384733, 384733, 384733, 2481885, 2481885, 10870493, 10870493, 10870493, 10870493, 145088221
OFFSET
0,4
COMMENTS
For every n, the odd Catalan numbers C(2^m-1) are eventually constant mod 2^n (namely for m >= n-1): then a(n) is the asymptotic value of the remainder.
LINKS
Shu-Chung Liu and Jean C.-C. Yeh, Catalan numbers modulo 2^k, J. Int. Seq. 13 (2010), article 10.5.4.
FORMULA
a(n) = remainder(Catalan(2^m-1), 2^n) for any m >= n-1.
EXAMPLE
The odd Catalan numbers mod 2^6=64 are 1,5,45,61,29,29,29, so a(6)=29.
MAPLE
A000108 := proc(n) binomial(2*n, n)/(n+1) ; end proc:
A038003 := proc(n) A000108(2^n-1) ; end proc:
A178854 := proc(n) if n = 0 then 0; else modp(A038003(n-1), 2^n) ; end if; end proc:
for n from 0 do printf("%d, \n", A178854(n)) ; end do: # R. J. Mathar, Jun 28 2010
MATHEMATICA
(* first do *) Needs["DiscreteMath`CombinatorialFunctions`"] (* then *) f[n_] := Mod[ CatalanNumber[2^n - 1], 2^n]; Array[f, 25, 0] (* Robert G. Wilson v, Jun 28 2010 *)
CROSSREFS
Cf. A038003 (odd Catalan numbers).
Sequence in context: A226618 A321770 A322926 * A224339 A368546 A133204
KEYWORD
nonn
AUTHOR
David A. Madore, Jun 18 2010
EXTENSIONS
a(12)-a(24) from Robert G. Wilson v, Jun 28 2010
a(25)-a(28) from Robert G. Wilson v, Jul 23 2010
STATUS
approved