

A178857


Decimal expansion of 4*Pi/(zeta(3/2)^(2/3)).


0



6, 6, 2, 5, 0, 0, 4, 0, 1, 8, 7, 9, 1, 2, 4, 1, 5, 3, 8, 3, 0, 1, 2, 0, 2, 5, 3, 0, 0, 6, 7, 8, 2, 5, 1, 4, 7, 2, 3, 2, 4, 8, 2, 3, 0, 8, 1, 3, 0, 4, 1, 7, 4, 0, 0, 0, 7, 2, 9, 8, 1, 2, 7, 9, 5, 3, 6, 6, 4, 4, 1, 6, 0, 6, 9, 0, 3, 0, 0, 4, 5, 3, 8, 1, 3, 6, 8, 2, 4, 9, 6, 5, 5, 0, 0, 0, 8, 8, 8, 3, 5, 4, 4, 0, 7, 7, 6, 4, 8, 3, 3, 0, 3, 6, 9, 7, 9, 7, 8, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Seiringer derived a constant which arises in the critical temperature of dilute Bose gases, 4*Pi/(zeta(3/2)^(2/3)).


REFERENCES

Robert Seiringer and Daniel Ueltschi, Rigorous upper bound on the critical temperature of dilute Bose gases, Phys. Rev. B 80, 014502, 2009.


LINKS

Table of n, a(n) for n=1..120.


EXAMPLE

6.625004018791241538301202530067825147232482308130417400072981279536644160690300453813682496550008885.


MATHEMATICA

RealDigits[(4 Pi)/Surd[Zeta[3/2]^2, 3], 10, 120][[1]] (* Harvey P. Dale, Dec 03 2018 *)


CROSSREFS

Cf. A078434 Decimal expansion of zeta(3/2), A178856 Decimal expansion of zeta(3/2)^(2/3).
Sequence in context: A021155 A254245 A218387 * A003676 A033259 A212298
Adjacent sequences: A178854 A178855 A178856 * A178858 A178859 A178860


KEYWORD

cons,nonn


AUTHOR

Jonathan Vos Post, Jun 20 2010


EXTENSIONS

Corrected and extended by Harvey P. Dale, Dec 03 2018


STATUS

approved



