This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033259 Decimal expansion of Laplace's limit constant. 11
 6, 6, 2, 7, 4, 3, 4, 1, 9, 3, 4, 9, 1, 8, 1, 5, 8, 0, 9, 7, 4, 7, 4, 2, 0, 9, 7, 1, 0, 9, 2, 5, 2, 9, 0, 7, 0, 5, 6, 2, 3, 3, 5, 4, 9, 1, 1, 5, 0, 2, 2, 4, 1, 7, 5, 2, 0, 3, 9, 2, 5, 3, 4, 9, 9, 0, 9, 7, 1, 8, 5, 3, 0, 8, 6, 5, 1, 1, 2, 7, 7, 2, 4, 9, 6, 5, 4, 8, 0, 2, 5, 9, 8, 9, 5, 8, 1, 8, 1, 6, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Maximum value taken by the function x/cosh(x), which occurs at A085984. - Hrothgar, Mar 12 2014 REFERENCES S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 266-268. LINKS S. R. Finch, Laplace Limit Constant [Broken link] J. J. Green, The Lipschitz constant for the radial projection on real l_p - implementation notes, 2012. - N. J. A. Sloane, Sep 19 2012 Simon Plouffe, The laplace limit constant(to 500 digits) Eric Weisstein's World of Mathematics, Laplace Limit. Eric Weisstein's World of Mathematics, Kepler's Equation FORMULA Equals sqrt(A085984^2-1). [Jean-François Alcover, May 14 2013] EXAMPLE 0.662743419349181580974742097109252907056233549115022417520392534990971853086... MATHEMATICA x/.FindRoot[ x Exp[ Sqrt[ 1+x^2 ] ]/(1+Sqrt[ 1+x^2 ])==1, {x, 1} ] Sqrt[x^2 - 1] /. FindRoot[ x == Coth[x], {x, 1}, WorkingPrecision -> 30 ]  (* Leo C. Stein, Jul 30 2017 *) PROG (PARI) sqrt(solve(u=1, 2, tanh(u)-1/u)^2-1)   \\ M. F. Hasler, Feb 01 2011 CROSSREFS Cf. A033259 - A033263, A085984. Sequence in context: A218387 A178857 A003676 * A212298 A064926 A285814 Adjacent sequences:  A033256 A033257 A033258 * A033260 A033261 A033262 KEYWORD nonn,cons AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 21 10:21 EDT 2018. Contains 313937 sequences. (Running on oeis4.)