OFFSET
1,3
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.7 and 5.22.6, pp. 54, 399.
Asmus L. Schmidt, Ergodic theory of complex continued fractions, Number Theory with an Emphasis on the Markoff Spectrum, in: A. D. Pollington and W. Moran (eds.), Number Theory with an Emphasis on the Markoff Spectrum, Dekker, 1993, pp. 215-226.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
Anthony J. Guttmann, Spanning tree generating functions and Mahler measure, arXiv:1207.2815 [math-ph], 2012.
Sheldon Yang, Some properties of Catalan's constant G, Internat. J. Math. Ed. Sci. Tech. 23 (4) (1992) 549-556, L*(1).
FORMULA
From Amiram Eldar, Jul 22 2020: (Start)
Equals 1 + Sum_{k>=1} (2*k-1)!!^2/((2*k)!!^2 * (2*k + 1)).
Equals Sum_{k>=0} binomial(2*k,k)^2/(16^k * (2*k + 1)). (End)
Equals (Sum_{n>=1} (-1)^(n+1)/(2*n - 1)^2) / (Sum_{n>=1} (-1)^(n+1)/(2*n - 1)) [Schmidt] (see Finch). - Stefano Spezia, Nov 07 2024
EXAMPLE
1.16624361612327512055353782587357967545626461594...
MAPLE
evalf(Catalan*4/Pi) ;
MATHEMATICA
RealDigits[4*Catalan/Pi, 10, 100][[1]] (* G. C. Greubel, Aug 23 2018 *)
PROG
(PARI) default(realprecision, 100); 4*Catalan/Pi \\ G. C. Greubel, Aug 23 2018
(Magma) R:= RealField(100); 4*Catalan(R)/Pi(R); // G. C. Greubel, Aug 23 2018
CROSSREFS
KEYWORD
AUTHOR
R. J. Mathar, Oct 27 2012
STATUS
approved