login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321768 Consider the ternary tree of triples P(n, k) with n > 0 and 0 < k <= 3^(n-1), such that P(1, 1) = [3; 4; 5] and each triple t on some row branches to the triples A*t, B*t, C*t on the next row (with A = [1, -2, 2; 2, -1, 2; 2, -2, 3], B = [1, 2, 2; 2, 1, 2; 2, 2, 3] and C = [-1, 2, 2; -2, 1, 2; -2, 2, 3]); T(n, k) is the first component of P(n, k). 9
3, 5, 21, 15, 7, 55, 45, 39, 119, 77, 33, 65, 35, 9, 105, 91, 105, 297, 187, 95, 207, 117, 57, 377, 299, 217, 697, 459, 175, 319, 165, 51, 275, 209, 115, 403, 273, 85, 133, 63, 11, 171, 153, 203, 555, 345, 189, 429, 247, 155, 987, 777, 539, 1755, 1161, 429 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The tree P runs uniquely through every primitive Pythagorean triple.
The ternary tree is built as follows:
- for any n and k such that n > 0 and 0 < k <= 3^(n-1):
- P(n, k) is a column vector,
- P(n+1, 3*k-2) = A * P(n, k),
- P(n+1, 3*k-1) = B * P(n, k),
- P(n+1, 3*k) = C * P(n, k).
All terms are odd.
Every primitive Pythagorean triple (a, b, c) can be characterized by a pair of parameters (i, j) such that:
- i > j > 0 and gcd(i, j) = 1 and i and j are of opposite parity,
- a = i^2 - j^2,
- b = 2 * i * j,
- c = i^2 + j^2,
- A321782(n, k) and A321783(n, k) respectively give the value of i and of j pertaining to (A321768(n, k), A321769(n, k), A321770(n, k)).
Every primitive Pythagorean triple (a, b, c) can also be characterized by a pair of parameters (u, v) such that:
- u > v > 0 and gcd(u, v) = 1 and u and v are odd,
- a = u * v,
- b = (u^2 - v^2) / 2,
- c = (u^2 + v^2) / 2,
- A321784(n, k) and A321785(n, k) respectively give the value of u and of v pertaining to (A321768(n, k), A321769(n, k), A321770(n, k)).
LINKS
Kevin Ryde, Trees of Primitive Pythagorean Triples, section UAD Tree "row-wise A leg".
FORMULA
Empirically:
- T(n, 1) = 2*n + 1,
- T(n, (3^(n-1) + 1)/2) = A046727(n),
- T(n, 3^(n-1)) = 4*n^2 - 1.
EXAMPLE
The first rows are:
3
5, 21, 15
7, 55, 45, 39, 119, 77, 33, 65, 35
PROG
(PARI) M = [[1, -2, 2; 2, -1, 2; 2, -2, 3], [1, 2, 2; 2, 1, 2; 2, 2, 3], [-1, 2, 2; -2, 1, 2; -2, 2, 3]];
T(n, k) = my (t=[3; 4; 5], d=digits(3^(n-1)+k-1, 3)); for (i=2, #d, t = M[d[i]+1] * t); return (t[1, 1])
CROSSREFS
See A321769 and A321770 for the other components.
See A322170 for the corresponding areas.
See A322181 for the corresponding perimeters.
Cf. A046727.
Sequence in context: A007363 A103991 A224994 * A331395 A086175 A065926
KEYWORD
nonn,tabf
AUTHOR
Rémy Sigrist, Nov 18 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 29 16:14 EDT 2024. Contains 373851 sequences. (Running on oeis4.)