login
A261982
Number of compositions of n with some part repeated.
55
0, 0, 1, 1, 5, 11, 21, 51, 109, 229, 455, 959, 1947, 3963, 7999, 16033, 32333, 64919, 130221, 260967, 522733, 1045825, 2093855, 4189547, 8382315, 16768455, 33543127, 67093261, 134193413, 268404995, 536829045, 1073686083, 2147408773, 4294869253, 8589803783
OFFSET
0,5
COMMENTS
Also compositions matching the pattern (1,1). - Gus Wiseman, Jun 23 2020
FORMULA
a(n) = A011782(n) - A032020(n).
G.f.: (1 - x) / (1 - 2*x) - Sum_{k>=0} k! * x^(k*(k + 1)/2) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Jan 30 2020
EXAMPLE
a(2) = 1: 11.
a(3) = 1: 111.
a(4) = 5: 22, 211, 121, 112, 1111.
MAPLE
b:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
`if`(k=0, `if`(n=0, 1, 0), b(n-k, k) +k*b(n-k, k-1)))
end:
a:= n-> ceil(2^(n-1))-add(b(n, k), k=0..floor((sqrt(8*n+1)-1)/2)):
seq(a(n), n=0..40);
MATHEMATICA
b[n_, k_] := b[n, k] = If[k<0 || n<0, 0, If[k==0, If[n==0, 1, 0], b[n-k, k] + k*b[n-k, k-1]]]; a[n_] := Ceiling[2^(n-1)]-Sum[b[n, k], {k, 0, Floor[ (Sqrt[8n+1]-1)/2]}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 08 2017, translated from Maple *)
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n], Length[#]>Length[Split[#]]&]], {n, 0, 10}] (* Gus Wiseman, Jun 24 2020 *)
CROSSREFS
Row sums of A261981 and of A262191.
Cf. A262047.
The version for patterns is A019472.
The (1,1)-avoiding version is A032020.
The case of partitions is A047967.
(1,1,1)-matching compositions are counted by A335455.
Patterns matched by compositions are counted by A335456.
(1,1)-matching compositions are ranked by A335488.
Sequence in context: A168642 A357750 A234597 * A296033 A296968 A184552
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 07 2015
STATUS
approved