|
|
A261982
|
|
Number of compositions of n with some part repeated.
|
|
54
|
|
|
0, 0, 1, 1, 5, 11, 21, 51, 109, 229, 455, 959, 1947, 3963, 7999, 16033, 32333, 64919, 130221, 260967, 522733, 1045825, 2093855, 4189547, 8382315, 16768455, 33543127, 67093261, 134193413, 268404995, 536829045, 1073686083, 2147408773, 4294869253, 8589803783
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
Also compositions matching the pattern (1,1). - Gus Wiseman, Jun 23 2020
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1 - x) / (1 - 2*x) - Sum_{k>=0} k! * x^(k*(k + 1)/2) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Jan 30 2020
|
|
EXAMPLE
|
a(2) = 1: 11.
a(3) = 1: 111.
a(4) = 5: 22, 211, 121, 112, 1111.
|
|
MAPLE
|
b:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
`if`(k=0, `if`(n=0, 1, 0), b(n-k, k) +k*b(n-k, k-1)))
end:
a:= n-> ceil(2^(n-1))-add(b(n, k), k=0..floor((sqrt(8*n+1)-1)/2)):
seq(a(n), n=0..40);
|
|
MATHEMATICA
|
b[n_, k_] := b[n, k] = If[k<0 || n<0, 0, If[k==0, If[n==0, 1, 0], b[n-k, k] + k*b[n-k, k-1]]]; a[n_] := Ceiling[2^(n-1)]-Sum[b[n, k], {k, 0, Floor[ (Sqrt[8n+1]-1)/2]}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 08 2017, translated from Maple *)
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n], Length[#]>Length[Split[#]]&]], {n, 0, 10}] (* Gus Wiseman, Jun 24 2020 *)
|
|
CROSSREFS
|
The version for patterns is A019472.
The (1,1)-avoiding version is A032020.
(1,1,1)-matching compositions are counted by A335455.
Patterns matched by compositions are counted by A335456.
(1,1)-matching compositions are ranked by A335488.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|