login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168642
a(n) = (8*2^n + (-1)^n)/3 for n > 0; a(0) = 1.
4
1, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971, 357913941, 715827883, 1431655765, 2863311531
OFFSET
0,2
COMMENTS
First differences of A085278.
FORMULA
a(n) = A001045(n+3) for n > 0.
a(n) = a(n-1) + 2*a(n-2) for n > 2; a(0) = 1, a(1) = 5, a(2) = 11.
G.f.: (1 + 2*x)^2/((1+x)*(1-2*x)).
E.g.f.: (8*exp(2*x) - 6 + exp(-x))/3. - G. C. Greubel, Jul 28 2016
MATHEMATICA
Table[(8*2^n +(-1)^n)/3 - 2*Boole[n==0], {n, 0, 40}] (* or *) LinearRecurrence[{1, 2}, {1, 5, 11}, 40] (* G. C. Greubel, Jul 28 2016; Feb 05 2021 *)
PROG
(Magma) [1] cat [ (8*2^n+(-1)^n)/3: n in [1..30] ];
(PARI) a(n)=([0, 1; 2, 1]^n*[1; 5])[1, 1] \\ Charles R Greathouse IV, Jul 29 2016
(Sage) [1]+[(2^(n+3) +(-1)^n)/3 for n in (1..40)] # G. C. Greubel, Feb 05 2021
CROSSREFS
Cf. A001045 (Jacobsthal sequence), A085278 (expansion of (1+2*x)^2/((1-2*x)*(1-x^2))).
Sequence in context: A166863 A163704 A131898 * A357750 A234597 A261982
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Dec 01 2009
STATUS
approved