login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168643
Triangle read by rows (0 <= k <= n): T(n,k) = [x^k] p(x,n) where p(x,0) = 1, p(x,n) = (6 - n)*(x + 1)^n - (5 - n)*(x^n + 1) for 1 <= n <= 4, and p (x,n) = 4*(x + 1)^n - Sum_{i=0..2} (Sum_{j=0..i} binomial(n, j)*(x^j + x^(n - j))) for n >= 5.
4
1, 1, 1, 1, 8, 1, 1, 9, 9, 1, 1, 8, 12, 8, 1, 1, 10, 30, 30, 10, 1, 1, 12, 45, 80, 45, 12, 1, 1, 14, 63, 140, 140, 63, 14, 1, 1, 16, 84, 224, 280, 224, 84, 16, 1, 1, 18, 108, 336, 504, 504, 336, 108, 18, 1, 1, 20, 135, 480, 840, 1008, 840, 480, 135, 20, 1
OFFSET
0,5
EXAMPLE
Triangle begins:
1;
1, 1;
1, 8, 1;
1, 9, 9, 1;
1, 8, 12, 8, 1;
1, 10, 30, 30, 10, 1;
1, 12, 45, 80, 45, 12, 1;
1, 14, 63, 140, 140, 63, 14, 1;
1, 16, 84, 224, 280, 224, 84, 16, 1;
1, 18, 108, 336, 504, 504, 336, 108, 18, 1;
1, 20, 135, 480, 840, 1008, 840, 480, 135, 20, 1;
...
MATHEMATICA
p[x_, n_] := If[n == 0, 1, If[n == 1, x + 1, 4*(x + 1)^n - (x^n + 1) - If[n > 2, (x^n + n*x^(n - 1) + n*x + 1), (x^n + 1)] - If[ n > 3, (x^n + n*x^( n - 1) + Binomial[n, n - 2]*x^(n - 2) + Binomial[n, n - 2]*x^2 + n*x + 1), (x^n + 1)]]];
Flatten[Table[CoefficientList[p[x, n], x], {n, 0, 10}]]
PROG
(Maxima) T(n, k) := if k = 0 or k = n then 1 else (if n <= 4 then (6 - n)*binomial(n, k) else ratcoef(4*(x + 1)^n - sum(sum(binomial(n, j)*(x^j + x^(n - j)), j, 1, i), i, 1, 2), x, k))$
create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Jan 02 2019 */
CROSSREFS
KEYWORD
nonn,easy,tabl,less
AUTHOR
EXTENSIONS
Edited by Franck Maminirina Ramaharo, Jan 02 2019
STATUS
approved