login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131898
a(n) = 2^(n+1) + 2*n - 1.
3
1, 5, 11, 21, 39, 73, 139, 269, 527, 1041, 2067, 4117, 8215, 16409, 32795, 65565, 131103, 262177, 524323, 1048613, 2097191, 4194345, 8388651, 16777261, 33554479, 67108913, 134217779, 268435509, 536870967, 1073741881, 2147483707, 4294967357, 8589934655, 17179869249
OFFSET
0,2
COMMENTS
Row sums of triangle A131897.
Binomial transform of (1, 4, 2, 2, 2, ...).
a(n), n > 0, is the number of maximal subsemigroups of the Motzkin monoid of degree n + 1. - James Mitchell and Wilf A. Wilson, Jul 21 2017
LINKS
James East, Jitender Kumar, James D. Mitchell, and Wilf A. Wilson, Maximal subsemigroups of finite transformation and partition monoids, arXiv:1706.04967 [math.GR], 2017. [From James Mitchell and Wilf A. Wilson, Jul 21 2017]
FORMULA
G.f.: ( -1-x+4*x^2 ) / ( (2*x-1)*(x-1)^2 ). - R. J. Mathar, Jul 03 2011
a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3). - Vincenzo Librandi, Jul 05 2012
EXAMPLE
a(3) = 21 = sum of row 3 terms of triangle A131897: (11 + 4 + 2 + 4).
a(3) = 21 = (1, 3, 3, 1) dot (1, 4, 2, 2) = (1 + 12 + 6 + 2).
MATHEMATICA
CoefficientList[Series[(-1-x+4*x^2)/((2*x-1)*(x-1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 05 2012 *)
PROG
(Magma) I:=[1, 5, 11]; [n le 3 select I[n] else 4*Self(n-1)-5*Self(n-2)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jul 05 2012
CROSSREFS
Cf. A131897.
Sequence in context: A163787 A166863 A163704 * A168642 A357750 A234597
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jul 25 2007
EXTENSIONS
New definition by R. J. Mathar, Jul 03 2011
STATUS
approved