login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^(n+1) + 2*n - 1.
3

%I #32 Sep 08 2022 08:45:31

%S 1,5,11,21,39,73,139,269,527,1041,2067,4117,8215,16409,32795,65565,

%T 131103,262177,524323,1048613,2097191,4194345,8388651,16777261,

%U 33554479,67108913,134217779,268435509,536870967,1073741881,2147483707,4294967357,8589934655,17179869249

%N a(n) = 2^(n+1) + 2*n - 1.

%C Row sums of triangle A131897.

%C Binomial transform of (1, 4, 2, 2, 2, ...).

%C a(n), n > 0, is the number of maximal subsemigroups of the Motzkin monoid of degree n + 1. - _James Mitchell_ and _Wilf A. Wilson_, Jul 21 2017

%H Vincenzo Librandi, <a href="/A131898/b131898.txt">Table of n, a(n) for n = 0..1000</a>

%H James East, Jitender Kumar, James D. Mitchell, and Wilf A. Wilson, <a href="https://arxiv.org/abs/1706.04967">Maximal subsemigroups of finite transformation and partition monoids</a>, arXiv:1706.04967 [math.GR], 2017. [From _James Mitchell_ and _Wilf A. Wilson_, Jul 21 2017]

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,2).

%F G.f.: ( -1-x+4*x^2 ) / ( (2*x-1)*(x-1)^2 ). - _R. J. Mathar_, Jul 03 2011

%F a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3). - _Vincenzo Librandi_, Jul 05 2012

%e a(3) = 21 = sum of row 3 terms of triangle A131897: (11 + 4 + 2 + 4).

%e a(3) = 21 = (1, 3, 3, 1) dot (1, 4, 2, 2) = (1 + 12 + 6 + 2).

%t CoefficientList[Series[(-1-x+4*x^2)/((2*x-1)*(x-1)^2),{x,0,40}],x] (* _Vincenzo Librandi_, Jul 05 2012 *)

%o (Magma) I:=[1, 5, 11]; [n le 3 select I[n] else 4*Self(n-1)-5*Self(n-2)+2*Self(n-3): n in [1..40]]; // _Vincenzo Librandi_, Jul 05 2012

%Y Cf. A131897.

%K nonn,easy

%O 0,2

%A _Gary W. Adamson_, Jul 25 2007

%E New definition by _R. J. Mathar_, Jul 03 2011