login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285508
Numbers with exactly three prime factors, not all distinct.
10
8, 12, 18, 20, 27, 28, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 124, 125, 147, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 242, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 343, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428, 436, 452
OFFSET
1,1
COMMENTS
Cubes of primes together with products of a prime and the square of a different prime.
Numbers k for which A001222(k) = 3, but A001221(k) < 3. - Antti Karttunen, Apr 20 2017
LINKS
Kalle Siukola, Python program
MAPLE
N:= 1000: # for terms <= N
P:= select(isprime, [2, seq(i, i=3..N/4, 2)]): nP:= nops(P):
sort(select(`<=`, [seq(seq(P[i]*P[j]^2, i=1..nP), j=1..nP)], N)); # Robert Israel, Oct 20 2024
MATHEMATICA
Select[Range[452], PrimeOmega[#] == 3 && PrimeNu[#] < 3 &] (* Giovanni Resta, Apr 20 2017 *)
PROG
(PARI)
isA285508(n) = ((omega(n) < 3) && (bigomega(n) == 3));
n=0; k=1; while(k <= 10000, n=n+1; if(isA285508(n), write("b285508.txt", k, " ", n); k=k+1));
\\ Antti Karttunen, Apr 20 2017
(Scheme, with my IntSeq-library) (define A285508 (MATCHING-POS 1 1 (lambda (n) (and (= 3 (A001222 n)) (< (A001221 n) 3))))) ;; Antti Karttunen, Apr 20 2017
(Python)
from sympy import primefactors, primeomega
def omega(n): return len(primefactors(n))
def bigomega(n): return primeomega(n)
print([n for n in range(1, 501) if omega(n)<3 and bigomega(n) == 3]) # Indranil Ghosh, Apr 20 2017 and Kalle Siukola, Oct 25 2023
(Python)
from math import isqrt
from sympy import primepi, primerange, integer_nthroot
def A285508(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return int(n+x-sum(primepi(x//(k**2))-(a<<1)+primepi(isqrt(x//k))-1 for a, k in enumerate(primerange(integer_nthroot(x, 3)[0]+1))))
return bisection(f, n, n) # Chai Wah Wu, Oct 20 2024
CROSSREFS
Setwise difference of A014612 and A007304.
Union of A030078 and A054753.
Sequence in context: A378494 A187042 A370650 * A054397 A075818 A090738
KEYWORD
easy,nonn
AUTHOR
Kalle Siukola, Apr 20 2017
STATUS
approved