login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075818
Even numbers with exactly 3 prime factors (counted with multiplicity).
8
8, 12, 18, 20, 28, 30, 42, 44, 50, 52, 66, 68, 70, 76, 78, 92, 98, 102, 110, 114, 116, 124, 130, 138, 148, 154, 164, 170, 172, 174, 182, 186, 188, 190, 212, 222, 230, 236, 238, 242, 244, 246, 258, 266, 268, 282, 284, 286, 290, 292, 310, 316, 318, 322, 332, 338
OFFSET
1,1
COMMENTS
Twice the semiprime numbers. - Juri-Stepan Gerasimov, Jun 01 2010
LINKS
FORMULA
a(n)=2*A001358(n). - Juri-Stepan Gerasimov, Jun 01 2010
EXAMPLE
28=2^2*7, 30=2*3*5 and 42=2*3*7 are even and are products of exactly 3 primes.
MAPLE
ts_bo3_sod := proc(n); if (numtheory[bigomega](n)=3 and type(n, even)='true') then RETURN(n); fi end: abo3sod := [seq(ts_bo3_sod(i), i=1..2300)]: abo3sod;
MATHEMATICA
Select[Range[100], Plus@@Last/@FactorInteger[#]==2&] 2 (* Vincenzo Librandi, Nov 10 2018 *)
Select[Range[2, 400, 2], PrimeOmega[#]==3&] (* Harvey P. Dale, Oct 15 2021 *)
PROG
(PARI) list(lim)=my(v=List()); forprime(p=2, lim\4, forprime(q=2, min(lim\p\2, p), listput(v, 2*p*q))); Set(v) \\ Charles R Greathouse IV, Aug 29 2017
(Magma) [2*n: n in [2..200] | &+[d[2]: d in Factorization(n)] eq 2]; // Vincenzo Librandi Nov 10 2018
CROSSREFS
Sequence in context: A370650 A285508 A054397 * A090738 A085103 A280968
KEYWORD
easy,nonn
AUTHOR
Jani Melik, Oct 13 2002
EXTENSIONS
Edited by Dean Hickerson, Oct 21 2002
STATUS
approved