login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320070 Expansion of 1/(theta_3(q) * theta_3(q^2) * theta_3(q^3)), where theta_3() is the Jacobi theta function. 2
1, -2, 2, -6, 14, -20, 32, -60, 98, -150, 232, -360, 558, -828, 1196, -1776, 2614, -3700, 5238, -7480, 10516, -14592, 20180, -27832, 38216, -51970, 70184, -94842, 127612, -170140, 226164, -300324, 396754, -521520, 683484, -893432, 1164330, -1511188, 1954756, -2524188 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000

FORMULA

Convolution inverse of A029594.

a(n) ~ (-1)^n * exp(2*Pi*sqrt(n/3)) / (4*sqrt(6)*n^(3/2)). - Vaclav Kotesovec, Oct 05 2018

MATHEMATICA

CoefficientList[Series[1/Product[EllipticTheta[3, 0, q^k], {k, 1, 3}], {q, 0, 80}], q] (* G. C. Greubel, Oct 29 2018 *)

PROG

(PARI) q='q+O('q^80); Vec(1/prod(k=1, 3, eta(q^(2*k))^5/(eta(q^k)* eta(q^(4*k)))^2 )) \\ G. C. Greubel, Oct 29 2018

CROSSREFS

Cf. A000122, A029594, A320068.

Sequence in context: A019100 A019101 A233230 * A319866 A266007 A051890

Adjacent sequences:  A320067 A320068 A320069 * A320071 A320072 A320073

KEYWORD

sign

AUTHOR

Seiichi Manyama, Oct 05 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 10:29 EDT 2021. Contains 348160 sequences. (Running on oeis4.)