login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319866
a(n) = 2*1 + 4*3 + 6*5 + 8*7 + 10*9 + 12*11 + ... + (up to the n-th term).
9
2, 2, 6, 14, 20, 44, 52, 100, 110, 190, 202, 322, 336, 504, 520, 744, 762, 1050, 1070, 1430, 1452, 1892, 1916, 2444, 2470, 3094, 3122, 3850, 3880, 4720, 4752, 5712, 5746, 6834, 6870, 8094, 8132, 9500, 9540, 11060, 11102, 12782, 12826, 14674, 14720, 16744
OFFSET
1,1
COMMENTS
For similar multiply/add sequences in descending blocks of k natural numbers, we have: a(n) = Sum_{j=1..k-1} (floor((n-j)/k)-floor((n-j-1)/k)) * (Product_{i=1..j} n-i-j+k+1) + Sum_{j=1..n} (floor(j/k)-floor((j-1)/k)) * (Product_{i=1..k} j-i+1). Here, k=2.
The denominators of the generating functions for these sequences are (1 + x)*(1 - x^k)^(k+1). - Georg Fischer and Andrew Howroyd, Mar 07 2020
FORMULA
G.f.: 2*x/((-1 + x)^2*(1 + x)^2) + 2*(x^2 + 3*x^4)/((-1 + x)^4 (1 + x)^3). - Stefano Spezia, Sep 30 2018
From Colin Barker, Sep 30 2018: (Start)
a(n) = (4*n - 6*n + 3*n^2 + 2*n^3) / 12 for n even.
a(n) = (15 + 4*n + 6*n - 3*n^2 + 2*n^3) / 12 for n odd.
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n>7.
(End)
EXAMPLE
a(1) = 2;
a(2) = 2*1 = 2;
a(3) = 2*1 + 4 = 6;
a(4) = 2*1 + 4*3 = 14;
a(5) = 2*1 + 4*3 + 6 = 20;
a(6) = 2*1 + 4*3 + 6*5 = 44;
a(7) = 2*1 + 4*3 + 6*5 + 8 = 52;
a(8) = 2*1 + 4*3 + 6*5 + 8*7 = 100;
a(9) = 2*1 + 4*3 + 6*5 + 8*7 + 10 = 110;
a(10) = 2*1 + 4*3 + 6*5 + 8*7 + 10*9 = 190;
a(11) = 2*1 + 4*3 + 6*5 + 8*7 + 10*9 + 12 = 202;
etc.
MAPLE
a:=(n, k)->add((floor((n-j)/k)-floor((n-j-1)/k))*(mul(n-i-j+k+1, i=1..j)), j=1..k-1) + add((floor(j/k)-floor((j-1)/k))*(mul(j-i+1, i=1..k)), j=1..n): seq(a(n, 2), n=1..50); # Muniru A Asiru, Sep 30 2018
MATHEMATICA
k:=2; a[n_]:= Sum[(Floor[(n-j)/k]-Floor[(n-j-1)/k])* Product[n-i-j+k+1, {i, 1, j }] , {j, 1, k-1} ] + Sum[(Floor[j/k]-Floor[(j-1)/k])* Product[j-i+1, {i, 1, k} ], {j, 1, n}]; Array[a, 50] (* Stefano Spezia, Sep 30 2018 *)
CoefficientList[Series[2/((-1 + x)^2 (1 + x)^2) + ( 2 (x + 3 x^3))/((-1 + x)^4 (1 + x)^3), {x, 0, 50}], x] (* Stefano Spezia, Sep 30 2018 *)
PROG
(PARI) Vec(2*x*(1 - x^2 + 4*x^3) / ((1 - x)^4*(1 + x)^3) + O(x^50)) \\ Colin Barker, Sep 30 2018
CROSSREFS
For similar sequences, see: A000217 (k=1), this sequence (k=2), A319867 (k=3), A319868 (k=4), A319869 (k=5), A319870 (k=6), A319871 (k=7), A319872 (k=8), A319873 (k=9), A319874 (k=10).
Sequence in context: A019101 A233230 A320070 * A266007 A051890 A071109
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Sep 29 2018
STATUS
approved