login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319873
a(n) = 9*8*7*6*5*4*3*2*1 + 18*17*16*15*14*13*12*11*10 + ... + (up to the n-th term).
9
9, 72, 504, 3024, 15120, 60480, 181440, 362880, 362880, 362898, 363186, 367776, 436320, 1391040, 13728960, 160755840, 1764685440, 17643588480, 17643588507, 17643589182, 17643606030, 17644009680, 17653276080, 17856715680, 22119259680, 107157012480
OFFSET
1,1
COMMENTS
For similar multiply/add sequences in descending blocks of k natural numbers, we have: a(n) = Sum_{j=1..k-1} (floor((n-j)/k)-floor((n-j-1)/k)) * (Product_{i=1..j} n-i-j+k+1) + Sum_{j=1..n} (floor(j/k)-floor((j-1)/k)) * (Product_{i=1..k} j-i+1). Here, k=9.
LINKS
EXAMPLE
a(1) = 9;
a(2) = 9*8 = 72;
a(3) = 9*8*7 = 504;
a(4) = 9*8*7*6 = 3024;
a(5) = 9*8*7*6*5 = 15120;
a(6) = 9*8*7*6*5*4 = 60480;
a(7) = 9*8*7*6*5*4*3 = 181440;
a(8) = 9*8*7*6*5*4*3*2 = 362880;
a(9) = 9*8*7*6*5*4*3*2*1 = 362880;
a(10) = 9*8*7*6*5*4*3*2*1 + 18 = 362898;
a(11) = 9*8*7*6*5*4*3*2*1 + 18*17 = 363186;
a(12) = 9*8*7*6*5*4*3*2*1 + 18*17*16 = 367776
a(13) = 9*8*7*6*5*4*3*2*1 + 18*17*16*15 = 436320;
a(14) = 9*8*7*6*5*4*3*2*1 + 18*17*16*15*14 = 1391040;
a(15) = 9*8*7*6*5*4*3*2*1 + 18*17*16*15*14*13 = 13728960;
a(16) = 9*8*7*6*5*4*3*2*1 + 18*17*16*15*14*13*12 = 160755840;
a(17) = 9*8*7*6*5*4*3*2*1 + 18*17*16*15*14*13*12*11 = 1764685440;
a(18) = 9*8*7*6*5*4*3*2*1 + 18*17*16*15*14*13*12*11*10 = 17643588480;
a(19) = 9*8*7*6*5*4*3*2*1 + 18*17*16*15*14*13*12*11*10 + 27 = 17643588507;
etc.
MAPLE
a:=(n, k)->add((floor((n-j)/k)-floor((n-j-1)/k))*(mul(n-i-j+k+1, i=1..j)), j=1..k-1) + add((floor(j/k)-floor((j-1)/k))*(mul(j-i+1, i=1..k)), j=1..n): seq(a(n, 9), n=1..30); # Muniru A Asiru, Sep 30 2018
MATHEMATICA
k:=9; a[n_]:=Sum[(Floor[(n-j)/k]-Floor[(n-j-1)/k])* Product[n-i-j+k+1, {i, 1, j }], {j, 1, k-1} ] + Sum[(Floor[j/k]-Floor[(j-1)/k])* Product[j-i+1, {i, 1, k} ], {j, 1, n}]; Array[a, 50] (* Stefano Spezia, Sep 30 2018 *)
CROSSREFS
For similar sequences, see: A000217 (k=1), A319866 (k=2), A319867 (k=3), A319868 (k=4), A319869 (k=5), A319870 (k=6), A319871 (k=7), A319872 (k=8), this sequence (k=9), A319874 (k=10).
Sequence in context: A005778 A288351 A319892 * A110396 A162755 A378483
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Sep 30 2018
STATUS
approved