login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 9*8*7*6*5*4*3*2*1 + 18*17*16*15*14*13*12*11*10 + ... + (up to the n-th term).
9

%I #19 Oct 18 2018 10:54:40

%S 9,72,504,3024,15120,60480,181440,362880,362880,362898,363186,367776,

%T 436320,1391040,13728960,160755840,1764685440,17643588480,17643588507,

%U 17643589182,17643606030,17644009680,17653276080,17856715680,22119259680,107157012480

%N a(n) = 9*8*7*6*5*4*3*2*1 + 18*17*16*15*14*13*12*11*10 + ... + (up to the n-th term).

%C For similar multiply/add sequences in descending blocks of k natural numbers, we have: a(n) = Sum_{j=1..k-1} (floor((n-j)/k)-floor((n-j-1)/k)) * (Product_{i=1..j} n-i-j+k+1) + Sum_{j=1..n} (floor(j/k)-floor((j-1)/k)) * (Product_{i=1..k} j-i+1). Here, k=9.

%H Colin Barker, <a href="/A319873/b319873.txt">Table of n, a(n) for n = 1..1000</a>

%e a(1) = 9;

%e a(2) = 9*8 = 72;

%e a(3) = 9*8*7 = 504;

%e a(4) = 9*8*7*6 = 3024;

%e a(5) = 9*8*7*6*5 = 15120;

%e a(6) = 9*8*7*6*5*4 = 60480;

%e a(7) = 9*8*7*6*5*4*3 = 181440;

%e a(8) = 9*8*7*6*5*4*3*2 = 362880;

%e a(9) = 9*8*7*6*5*4*3*2*1 = 362880;

%e a(10) = 9*8*7*6*5*4*3*2*1 + 18 = 362898;

%e a(11) = 9*8*7*6*5*4*3*2*1 + 18*17 = 363186;

%e a(12) = 9*8*7*6*5*4*3*2*1 + 18*17*16 = 367776

%e a(13) = 9*8*7*6*5*4*3*2*1 + 18*17*16*15 = 436320;

%e a(14) = 9*8*7*6*5*4*3*2*1 + 18*17*16*15*14 = 1391040;

%e a(15) = 9*8*7*6*5*4*3*2*1 + 18*17*16*15*14*13 = 13728960;

%e a(16) = 9*8*7*6*5*4*3*2*1 + 18*17*16*15*14*13*12 = 160755840;

%e a(17) = 9*8*7*6*5*4*3*2*1 + 18*17*16*15*14*13*12*11 = 1764685440;

%e a(18) = 9*8*7*6*5*4*3*2*1 + 18*17*16*15*14*13*12*11*10 = 17643588480;

%e a(19) = 9*8*7*6*5*4*3*2*1 + 18*17*16*15*14*13*12*11*10 + 27 = 17643588507;

%e etc.

%p a:=(n,k)->add((floor((n-j)/k)-floor((n-j-1)/k))*(mul(n-i-j+k+1,i=1..j)),j=1..k-1) + add((floor(j/k)-floor((j-1)/k))*(mul(j-i+1,i=1..k)),j=1..n): seq(a(n,9),n=1..30); # _Muniru A Asiru_, Sep 30 2018

%t k:=9; a[n_]:=Sum[(Floor[(n-j)/k]-Floor[(n-j-1)/k])* Product[n-i-j+k+1, {i,1,j }], {j,1,k-1} ] + Sum[(Floor[j/k]-Floor[(j-1)/k])* Product[j-i+1, {i,1,k} ], {j,1,n}]; Array[a, 50] (* _Stefano Spezia_, Sep 30 2018 *)

%Y For similar sequences, see: A000217 (k=1), A319866 (k=2), A319867 (k=3), A319868 (k=4), A319869 (k=5), A319870 (k=6), A319871 (k=7), A319872 (k=8), this sequence (k=9), A319874 (k=10).

%K nonn,easy

%O 1,1

%A _Wesley Ivan Hurt_, Sep 30 2018