|
|
A110396
|
|
10's complement factorial of n: a(n) = (10's complement of n)*(10's complement of n-1)*...*(10's complement of 2)*(10's complement of 1).
|
|
8
|
|
|
9, 72, 504, 3024, 15120, 60480, 181440, 362880, 362880, 32659200, 2906668800, 255786854400, 22253456332800, 1913797244620800, 162672765792768000, 13664512326592512000, 1134154523107178496000, 93000670894788636672000, 7533054342477879570432000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(n) = Product_{i=1..n} c(i), where c(i) is the difference between i and the next power of 10 (for example, c(13) = 100 - 13 = 87; c(100) = 1000 - 100 = 900). - Emeric Deutsch, Jul 31 2005
|
|
LINKS
|
|
|
EXAMPLE
|
a(3) = (10-3)*(10-2)*(10-1) = 7*8*9 = 504.
|
|
MAPLE
|
s:=proc(m) nops(convert(m, base, 10)) end: for q from 1 to 120 do c[q]:=10^s(q)-q od: a:=n->product(c[i], i=1..n): seq(a(n), n=1..20); # Emeric Deutsch, Jul 31 2005
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1,
(10^length(n)-n)*a(n-1))
end:
|
|
CROSSREFS
|
|
|
KEYWORD
|
base,easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|