Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Mar 05 2019 20:44:17
%S 9,72,504,3024,15120,60480,181440,362880,362880,32659200,2906668800,
%T 255786854400,22253456332800,1913797244620800,162672765792768000,
%U 13664512326592512000,1134154523107178496000,93000670894788636672000,7533054342477879570432000
%N 10's complement factorial of n: a(n) = (10's complement of n)*(10's complement of n-1)*...*(10's complement of 2)*(10's complement of 1).
%C a(n) = Product_{i=1..n} c(i), where c(i) is the difference between i and the next power of 10 (for example, c(13) = 100 - 13 = 87; c(100) = 1000 - 100 = 900). - _Emeric Deutsch_, Jul 31 2005
%H Alois P. Heinz, <a href="/A110396/b110396.txt">Table of n, a(n) for n = 1..400</a>
%e a(3) = (10-3)*(10-2)*(10-1) = 7*8*9 = 504.
%p s:=proc(m) nops(convert(m,base,10)) end: for q from 1 to 120 do c[q]:=10^s(q)-q od: a:=n->product(c[i],i=1..n): seq(a(n),n=1..20); # _Emeric Deutsch_, Jul 31 2005
%p # second Maple program:
%p a:= proc(n) option remember; `if`(n=0, 1,
%p (10^length(n)-n)*a(n-1))
%p end:
%p seq(a(n), n=1..30); # _Alois P. Heinz_, Sep 22 2015
%Y Cf. A110394, A110395.
%K base,easy,nonn
%O 1,1
%A _Amarnath Murthy_, Jul 29 2005
%E More terms from _Emeric Deutsch_, Jul 31 2005