OFFSET
1,1
COMMENTS
For similar multiply/add sequences in descending blocks of k natural numbers, we have: a(n) = Sum_{j=1..k-1} (floor((n-j)/k)-floor((n-j-1)/k)) * (Product_{i=1..j} n-i-j+k+1) + Sum_{j=1..n} (floor(j/k)-floor((j-1)/k)) * (Product_{i=1..k} j-i+1). Here, k=6.
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
EXAMPLE
a(1) = 6;
a(2) = 6*5 = 30;
a(3) = 6*5*4 = 120;
a(4) = 6*5*4*3 = 360;
a(5) = 6*5*4*3*2 = 720;
a(6) = 6*5*4*3*2*1 = 720;
a(7) = 6*5*4*3*2*1 + 12 = 732;
a(8) = 6*5*4*3*2*1 + 12*11 = 852;
a(9) = 6*5*4*3*2*1 + 12*11*10 = 2040;
a(10) = 6*5*4*3*2*1 + 12*11*10*9 = 12600;
a(11) = 6*5*4*3*2*1 + 12*11*10*9*8 = 95760;
a(12) = 6*5*4*3*2*1 + 12*11*10*9*8*7 = 666000;
a(13) = 6*5*4*3*2*1 + 12*11*10*9*8*7 + 18 = 666018;
a(14) = 6*5*4*3*2*1 + 12*11*10*9*8*7 + 18*17 = 666306;
a(15) = 6*5*4*3*2*1 + 12*11*10*9*8*7 + 18*17*16 = 670896;
a(16) = 6*5*4*3*2*1 + 12*11*10*9*8*7 + 18*17*16*15 = 739440;
a(17) = 6*5*4*3*2*1 + 12*11*10*9*8*7 + 18*17*16*15*14 = 1694160;
a(18) = 6*5*4*3*2*1 + 12*11*10*9*8*7 + 18*17*16*15*14*13 = 14032080;
a(19) = 6*5*4*3*2*1 + 12*11*10*9*8*7 + 18*17*16*15*14*13 + 24 = 14032104;
a(20) = 6*5*4*3*2*1 + 12*11*10*9*8*7 + 18*17*16*15*14*13 + 24*23 = 14032632;
etc.
MAPLE
a:=(n, k)->add((floor((n-j)/k)-floor((n-j-1)/k))*(mul(n-i-j+k+1, i=1..j)), j=1..k-1) + add((floor(j/k)-floor((j-1)/k))*(mul(j-i+1, i=1..k)), j=1..n): seq(a(n, 6), n=1..35); # Muniru A Asiru, Sep 30 2018
MATHEMATICA
k:=6; a[n_]:=Sum[(Floor[(n-j)/k]-Floor[(n-j-1)/k])*Product[n-i-j+k+1, {i, 1, j }] , {j, 1, k-1} ] + Sum[(Floor[j/k]-Floor[(j-1)/k])*Product[j-i+1, {i, 1, k}], {j, 1, n}]; Array[a, 50] (* Stefano Spezia, Sep 30 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Sep 30 2018
STATUS
approved