login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346174
Inverse binomial transform of A317614.
1
0, 1, 6, 30, 120, 420, 1344, 4032, 11520, 31680, 84480, 219648, 559104, 1397760, 3440640, 8355840, 20054016, 47628288, 112066560, 261488640, 605552640, 1392771072, 3183476736, 7235174400, 16357785600, 36805017600, 82443239424, 183911841792, 408692981760, 904963031040
OFFSET
0,3
LINKS
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Binomial Transform
FORMULA
O.g.f.: x*(1 - 2*x + 6*x^2 - 8*x^3 + 4*x^4)/(1 - 2*x)^4.
E.g.f.: x*(1 + exp(2*x)*(3 + 6*x + 2*x^2))/4.
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n > 5.
a(n) = 2^(n-4)*n*(n + 1)*(n + 2) with a(0) = 0 and a(1) = 1.
a(n) = A000079(n-4)*A007531(n+2) for n > 1.
a(n) ~ A128789(n)/16.
Sum_{n>0} 1/a(n) = 8*log(2) - 13/3 = 1.21184411114622914200452363833...
MATHEMATICA
LinearRecurrence[{8, -24, 32, -16}, {0, 1, 6, 30, 120, 420}, 30]
CROSSREFS
Cf. A000079, A007531, A128789, A257872 (-8*log(2)), A317614.
Sequence in context: A319889 A319870 A055281 * A182349 A371036 A215225
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Jul 08 2021
STATUS
approved