login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029594 Theta series of quadratic form with Gram matrix [ 1, 0, 0; 0, 2, 0; 0, 0, 3 ]. 12
1, 2, 2, 6, 6, 4, 12, 4, 2, 14, 0, 8, 18, 4, 12, 16, 6, 4, 14, 8, 12, 24, 12, 8, 12, 10, 0, 18, 12, 12, 36, 12, 2, 16, 12, 8, 42, 12, 12, 36, 0, 12, 0, 8, 24, 28, 24, 8, 18, 14, 14, 32, 12, 12, 48, 8, 12, 36, 0, 16, 48, 12, 12, 28, 6, 16, 36, 16, 12, 32, 24, 24, 14, 8, 0, 42, 24, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This is the digonal P lattice (the classical holotype) of dimension 3.

LINKS

John Cannon, Table of n, a(n) for n = 0..10000

G. Nebe and N. J. A. Sloane, Home page for this lattice

FORMULA

Euler transform of period 24 sequence [2, -1, 4, -4, 2, -4, 2, -2, 4, -1, 2, -5, 2, -1, 4, -2, 2, -4, 2, -4, 4, -1, 2, -3, ...]. - Michael Somos, Sep 20 2005

Expansion of eta(q^2)^3eta(q^4)^3eta(q^6)^5/(eta(q)eta(q^3)eta(q^8)eta(q^12))^2 in powers of q. - Michael Somos, Sep 20 2005

G.f.: theta_3(q)theta_3(q^2)theta_3(q^3).

EXAMPLE

1 + 2*q + 2*q^2 + 6*q^3 + 6*q^4 + 4*q^5 + 12*q^6 + 4*q^7 + 2*q^8 + 14*q^9 + ...

MATHEMATICA

s = EllipticTheta[3, 0, q] EllipticTheta[3, 0, q^2] EllipticTheta[3, 0, q^3] + O[q]^80; CoefficientList[s, q] (* Jean-Fran├žois Alcover, Nov 30 2015 *)

PROG

(PARI) a(n)=if(n<1, n==0, qfrep([1, 0, 0; 0, 2, 0; 0, 0, 3], n)[n]*2) /* Michael Somos, Sep 20 2005 */

(Sage)

Q = DiagonalQuadraticForm(ZZ, [1, 3, 2])

Q.representation_number_list(78) # Peter Luschny, Jun 25 2014

CROSSREFS

Sequence in context: A184158 A060779 A324650 * A320191 A320190 A320189

Adjacent sequences:  A029591 A029592 A029593 * A029595 A029596 A029597

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 05:54 EST 2020. Contains 332116 sequences. (Running on oeis4.)