login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320992
Expansion of (Product_{k>0} theta_4(q^k)/theta_3(q^k))^(1/2), where theta_3() and theta_4() are the Jacobi theta functions.
7
1, -2, 0, -2, 6, -2, 4, -6, 8, -16, 8, -14, 26, -26, 24, -30, 58, -50, 60, -78, 90, -118, 104, -138, 192, -224, 204, -268, 366, -354, 412, -474, 596, -694, 724, -818, 1052, -1162, 1176, -1470, 1756, -1918, 2052, -2434, 2814, -3168, 3396, -3806, 4674, -5124, 5396
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
a(n) = (-1)^n * A320078(n).
Expansion of Product_{k>0} (eta(q^k)^2*eta(q^(4*k))) / eta(q^(2*k))^3.
Expansion of Product_{k>0} theta_4(q^(2*k-1)).
a(n) ~ (-1)^n * (log(2))^(1/4) * exp(Pi*sqrt(n*log(2)/2)) / (4*n^(3/4)). - Vaclav Kotesovec, Oct 26 2018
MATHEMATICA
nmax = 60; CoefficientList[Series[Product[Sqrt[EllipticTheta[4, 0, x^k] / EllipticTheta[3, 0, x^k]], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 26 2018 *)
CROSSREFS
Convolution inverse of A320968.
Sequence in context: A033727 A033757 A320240 * A320078 A136426 A325199
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 26 2018
STATUS
approved