login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320970 Expansion of Product_{k>0} theta_4(q^k)/theta_3(q^k), where theta_3() and theta_4() are the Jacobi theta functions. 4
1, -4, 4, -4, 20, -28, 20, -52, 84, -104, 156, -180, 308, -460, 468, -684, 1028, -1308, 1592, -2084, 2940, -3668, 4564, -5716, 7556, -9912, 11484, -14616, 19252, -23548, 28316, -35188, 44724, -54532, 65996, -79948, 99784, -122796, 143972, -175372, 216524, -259996, 308004, -371140 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..1000

Eric Weisstein's World of Mathematics, Jacobi Theta Functions

FORMULA

Expansion of Product_{k>0} (eta(q^k)^4*eta(q^(4*k))^2) / eta(q^(2*k))^6.

a(n) ~ (-1)^n * exp(Pi*sqrt(log(2)*n)) * (log(2))^(1/4) / (4*n^(3/4)). - Vaclav Kotesovec, Oct 26 2018

MATHEMATICA

With[{nmax=80}, CoefficientList[Series[Product[EllipticTheta[4, 0, q^k]/EllipticTheta[3, 0, q^k], {k, 1, nmax+2}], {q, 0, nmax}], q]] (* G. C. Greubel, Oct 29 2018 *)

PROG

(PARI) m=80; q='q+O('q^m); Vec(1/prod(k=1, m+2, eta(q^(2*k))^6/( eta(q^k)^4* eta(q^(4*k))^2) )) \\ G. C. Greubel, Oct 29 2018

CROSSREFS

Cf. A000122, A002448, A320068, A320908, A320967.

Sequence in context: A319257 A131946 A034896 * A216871 A120914 A303397

Adjacent sequences:  A320967 A320968 A320969 * A320971 A320972 A320973

KEYWORD

sign

AUTHOR

Seiichi Manyama, Oct 25 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 21:52 EDT 2020. Contains 334671 sequences. (Running on oeis4.)