login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320973
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = n^k * Product_{p|n, p prime} (1 + 1/p^k).
1
1, 1, 2, 1, 3, 2, 1, 5, 4, 2, 1, 9, 10, 6, 2, 1, 17, 28, 20, 6, 4, 1, 33, 82, 72, 26, 12, 2, 1, 65, 244, 272, 126, 50, 8, 2, 1, 129, 730, 1056, 626, 252, 50, 12, 2, 1, 257, 2188, 4160, 3126, 1394, 344, 80, 12, 4, 1, 513, 6562, 16512, 15626, 8052, 2402, 576, 90, 18, 2
OFFSET
1,3
FORMULA
G.f. of column k: Sum_{j>=1} mu(j)^2*PolyLog(-k,x^j), where PolyLog() is the polylogarithm function.
A(n,k) = Sum_{d|n} mu(n/d)^2*d^k.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 3, 5, 9, 17, 33, ...
2, 4, 10, 28, 82, 244, ...
2, 6, 20, 72, 272, 1056, ...
2, 6, 26, 126, 626, 3126, ...
4, 12, 50, 252, 1394, 8052, ...
MATHEMATICA
Table[Function[k, n^k Product[1 + Boole[PrimeQ[d]]/d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
Table[Function[k, SeriesCoefficient[Sum[MoebiusMu[j]^2 PolyLog[-k, x^j], {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
Table[Function[k, Sum[MoebiusMu[n/d]^2 d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
CROSSREFS
Columns k=0..4 give A034444, A001615, A065958, A065959, A065960.
Cf. A008683, A059379, A059380, A320974 (diagonal).
Sequence in context: A058399 A209434 A207611 * A058400 A131344 A129262
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Oct 25 2018
STATUS
approved