

A194738


Number of k such that {k*sqrt(3)} < {n*sqrt(3)}, where { } = fractional part.


34



1, 1, 1, 4, 3, 2, 1, 7, 5, 3, 1, 10, 7, 4, 15, 11, 7, 3, 17, 12, 7, 2, 19, 13, 7, 1, 21, 14, 7, 29, 21, 13, 5, 30, 21, 12, 3, 31, 21, 11, 1, 32, 21, 10, 43, 31, 19, 7, 43, 30, 17, 4, 43, 29, 15, 56, 41, 26, 11, 55, 39, 23, 7, 54, 37, 20, 3, 53, 35, 17, 69, 50, 31, 12, 67
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Related sequences:
A019587, A194733, A019588, A194734; r=(1+sqrt(5))/2
A054072, A194735, A194736, A194737; r=sqrt(2)
A194738, A194739, A194740, A194741; r=sqrt(3)
A194742, A194743, A194744, A194745; r=sqrt(5)
A194746, A194747, A194748, A194749; r=sqrt(6)
A194750, A194751, A194752, A194753; r=e
A194754, A194755, A194756, A194757; r=pi
A194758, A194759, A194760, A194761; r=log(2)
A194762, A194763, A194764, A194765; r=2^(1/3)
In each case, trivially, the sum of the first two sequences is A000027(for n>0), and likewise for the sum of the other two.


LINKS

Table of n, a(n) for n=1..75.


EXAMPLE

{r}=0.7...; {2r}=0.4...; {3r}=0.1...;
{4f}=0.9...; {5r}=0.6...; so that a(5)=3.


MATHEMATICA

r = Sqrt[3]; p[x_] := FractionalPart[x];
u[n_, k_] := If[p[k*r] <= p[n*r], 1, 0]
v[n_, k_] := If[p[k*r] > p[n*r], 1, 0]
s[n_] := Sum[u[n, k], {k, 1, n}]
t[n_] := Sum[v[n, k], {k, 1, n}]
Table[s[n], {n, 1, 100}] (* A194738 *)
Table[t[n], {n, 1, 100}] (* A194739 *)


CROSSREFS

Cf. A194739, A194740.
Sequence in context: A085064 A030587 A194764 * A194750 A194743 A113778
Adjacent sequences: A194735 A194736 A194737 * A194739 A194740 A194741


KEYWORD

nonn


AUTHOR

Clark Kimberling, Sep 02 2011


STATUS

approved



