login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327227
Number of labeled simple graphs covering n vertices with at least one endpoint/leaf.
22
0, 0, 1, 3, 31, 515, 15381, 834491, 83016613, 15330074139, 5324658838645, 3522941267488973, 4489497643961740521, 11119309286377621015089, 53893949089393110881259181, 513788884660608277842596504415, 9669175277199248753133328740702449
OFFSET
0,4
COMMENTS
Covering means there are no isolated vertices.
A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also graphs with minimum vertex-degree 1.
LINKS
FORMULA
Inverse binomial transform of A245797, if we assume A245797(0) = 0.
EXAMPLE
The a(4) = 31 edge-sets:
{12,34} {12,13,14} {12,13,14,23}
{13,24} {12,13,24} {12,13,14,24}
{14,23} {12,13,34} {12,13,14,34}
{12,14,23} {12,13,23,24}
{12,14,34} {12,13,23,34}
{12,23,24} {12,14,23,24}
{12,23,34} {12,14,24,34}
{12,24,34} {12,23,24,34}
{13,14,23} {13,14,23,34}
{13,14,24} {13,14,24,34}
{13,23,24} {13,23,24,34}
{13,23,34} {14,23,24,34}
{13,24,34}
{14,23,24}
{14,23,34}
{14,24,34}
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]==1&]], {n, 0, 5}]
CROSSREFS
Column k=1 of A327366.
The non-covering version is A245797.
The unlabeled version is A324693.
The generalization to set-systems is A327229.
BII-numbers of set-systems with minimum degree 1 are A327105.
Sequence in context: A342206 A346313 A143637 * A360091 A245109 A121563
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 01 2019
STATUS
approved