OFFSET
1,2
COMMENTS
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
In a set-system, the degree of a vertex is the number of edges containing it.
EXAMPLE
The sequence of all set-systems with minimum degree 1 together with their BII-numbers begins:
1: {{1}}
2: {{2}}
3: {{1},{2}}
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
12: {{1,2},{3}}
13: {{1},{1,2},{3}}
14: {{2},{1,2},{3}}
15: {{1},{2},{1,2},{3}}
16: {{1,3}}
17: {{1},{1,3}}
18: {{2},{1,3}}
19: {{1},{2},{1,3}}
20: {{1,2},{1,3}}
21: {{1},{1,2},{1,3}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Select[Range[0, 100], If[#==0, 0, Min@@Length/@Split[Sort[Join@@bpe/@bpe[#]]]]==1&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 26 2019
STATUS
approved