login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136284
Number of graphs on n labeled nodes with maximal degree exactly 2.
7
0, 0, 4, 31, 227, 1782, 15564, 151455, 1635703, 19457998, 252962528, 3568119351, 54262590843, 884831668974, 15397747311556, 284767367151241, 5576696534340377, 115269731259650802, 2507575460681918232, 57262481202198407625, 1369461739333488200365
OFFSET
1,3
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.
LINKS
FORMULA
Equals A136281 - A000085.
Recurrence: 2*(n-3)*(9*n-64)*a(n) = 2*(18*n^3 - 182*n^2 + 423*n - 149)*a(n-1) - 2*(n-1)*(9*n^3 - 91*n^2 + 243*n - 173)*a(n-2) + 6*(n-2)*(n-1)*(n+1)*a(n-3) + (n-3)*(n-2)*(n-1)*(9*n^2 - 91*n + 224)*a(n-4) - (n-4)*(n-3)*(n-2)*(n-1)*(9*n-67)*a(n-5) + (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(9*n-55)*a(n-6). - Vaclav Kotesovec, Feb 09 2014
a(n) ~ exp(sqrt(2*n)-n-1/2) * n^n / sqrt(2) * (1 + 19/(24*sqrt(2*n))). - Vaclav Kotesovec, Feb 09 2014
E.g.f.: exp(1/(1-x)/2 - 1/2 + log(1/(1-x))/2-x^2/4) - exp(x+x^2/2!). - Joerg Arndt, Jul 24 2016
MATHEMATICA
nn = 20; Drop[Range[0, nn]! CoefficientList[Series[Exp[1/(1 - z)/2 - 1/2 + Log[1/(1 - z)]/2 - z^2/4] - Exp[z + z^2/2!], {z, 0, nn}], z], 1] (* Geoffrey Critzer, Jul 23 2016 *)
PROG
(PARI) x='x+O('x^22); concat( [0, 0], Vec( serlaplace( exp(1/(1-x)/2 - 1/2 + log(1/(1-x))/2-x^2/4) - exp(x+x^2/2!) ) ) ) \\ Joerg Arndt, Jul 24 2016
CROSSREFS
Cf. A000085 (degree at most 1), A136281, A136282, A136283, A136285, A136286.
Sequence in context: A005216 A124033 A014537 * A183911 A039765 A001091
KEYWORD
nonn
AUTHOR
Don Knuth, Mar 31 2008
EXTENSIONS
More terms from Alois P. Heinz, Sep 12 2008
STATUS
approved