login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136287
Numbers k such that k*(k+1) - 1 and k*(k+3) - 1 are both the initial member of a pair of twin primes and Sophie Germain primes. In other words, k*(k+1) - 1, k*(k+1) + 1, k*(k+3) - 1, k*(k+3) + 1, 2*k*(k+1) - 1, 2*k*(k+3) - 1 are all primes.
0
3727470, 16547895, 20983605, 25649085, 27563745, 27906165, 38221260, 41232960, 55136850, 70584030, 72097305, 78362415, 91531320, 94746750, 121155165, 134647800, 134660370, 141473715, 150940515, 188741475, 261431820, 275356290, 275952675, 276220965, 307341165, 311631255
OFFSET
1,1
COMMENTS
For k = 134467800, 275356290 and 443034450, 2*k*(k+1) + 1 is also prime.
PROG
(PARI) is(k) = !(k%15) && isprime(k*(k+1)-1) && isprime(k*(k+1)+1) && isprime(k*(k+3)-1) && isprime(k*(k+3)+1) && isprime(2*k*(k+1)-1) && isprime(2*k*(k+3)-1); \\ Jinyuan Wang, Mar 20 2020
CROSSREFS
Subsequence of A138303.
Sequence in context: A328215 A216002 A187644 * A254496 A254489 A253861
KEYWORD
nonn
AUTHOR
Pierre CAMI, Mar 19 2008
EXTENSIONS
Terms corrected by Jinyuan Wang, Mar 20 2020
STATUS
approved