login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327028
T(n, k) = k! * Sum_{d|n} phi(d) * A008284(n/d, k) for n >= 1, T(0, k) = 0^k. Triangle read by rows for 0 <= k <= n.
2
1, 0, 1, 0, 2, 2, 0, 3, 2, 6, 0, 4, 6, 6, 24, 0, 5, 4, 12, 24, 120, 0, 6, 12, 24, 48, 120, 720, 0, 7, 6, 24, 72, 240, 720, 5040, 0, 8, 16, 36, 144, 360, 1440, 5040, 40320, 0, 9, 12, 54, 144, 600, 2160, 10080, 40320, 362880
OFFSET
0,5
EXAMPLE
[0] 1
[1] 0, 1
[2] 0, 2, 2
[3] 0, 3, 2, 6
[4] 0, 4, 6, 6, 24
[5] 0, 5, 4, 12, 24, 120
[6] 0, 6, 12, 24, 48, 120, 720
[7] 0, 7, 6, 24, 72, 240, 720, 5040
[8] 0, 8, 16, 36, 144, 360, 1440, 5040, 40320
[9] 0, 9, 12, 54, 144, 600, 2160, 10080, 40320, 362880
MAPLE
A327028 := (n, k) -> `if`(n=0, 1, k!*add(phi(d)*A008284(n/d, k), d = divisors(n))):
seq(seq(A327028(n, k), k=0..n), n=0..9);
MATHEMATICA
A327028[0 , k_] := 1;
A327028[n_, k_] := DivisorSum[n, EulerPhi[#] A318144[n/#, k] (-1)^k &];
Table[A327028[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
PROG
(SageMath) # uses[DivisorTriangle from A327029]
from sage.combinat.partition import number_of_partitions_length
def A318144Abs(n, k): return number_of_partitions_length(n, k)*factorial(k)
DivisorTriangle(euler_phi, A318144Abs, 10)
CROSSREFS
Cf. A008284, A318144, A000142 (main diagonal), A327025 (row sums), A327029.
Sequence in context: A129236 A127465 A339033 * A271707 A341445 A360048
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 20 2019
STATUS
approved