login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145884
Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n such that the difference between the sum of the valley abscissae and number of valleys is k (0 <= k <= (n-1)^2).
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 4, 4, 4, 4, 3, 3, 2, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 10, 10, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 1, 1, 1, 1, 2, 3, 4, 6, 7, 9, 11, 13, 15, 18, 19, 21, 23, 24, 24, 25, 24, 24, 23, 21, 19, 18, 15, 13, 11, 9, 7, 6, 4, 3
OFFSET
0,13
COMMENTS
Row n contains 1+(n-1)^2 entries (n >= 1).
Row sums are the Catalan numbers (A000108).
Sum_{k=0..(n-1)^2} k*T(n,k) = A145885(n).
In the R. Stanley reference one has the equivalent statistic (maj(w) - des(w)) on Dyck words w.
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see p. 236, Exercise 6.34 d.
LINKS
FORMULA
The generating polynomial for row n is P[n](t) = ((1+t)/(1+t^n))*binomial[2n,n]/[n+1], where [n+1]=1+t+t^2+...+t^n and binomial[2n,n] is a Gaussian polynomial.
EXAMPLE
T(4,5)=2 because we have UD.UUD.UDD (2+5-2=5) and UUUDDD.UD (6-1=5); here U=(1,1), D=(1,-1) and each valley is shown by a dot.
Triangle starts:
1;
1;
1,1;
1,1,1,1,1;
1,1,1,2,2,2,2,1,1,1;
1,1,1,2,3,3,4,4,4,4,4,3,3,2,1,1,1;
MAPLE
br:=proc(n) options operator, arrow: sum(q^i, i=0..n-1) end proc: f:=proc(n) options operator, arrow: product(br(j), j=1..n) end proc: cbr:=proc(n, k) options operator, arrow: f(n)/(f(k)*f(n-k)) end proc: P:=proc(n) options operator, arrow: sort(expand(simplify((q+1)*cbr(2*n, n)/(br(n+1)*(1+q^n))))) end proc: 1; for n to 7 do seq(coeff(P(n), q, k), k=0..(n-1)^2) end do; # yields sequence in triangular form
MATHEMATICA
g[k_] := (1 - t^k)/(1 - t);
gpol[n_, k_] := If[0 <= k <= n, Product[g[n - j + 1]/g[j], {j, 1, k}], 0];
P[n_] := ((1 + t)/(1 + t^n)) gpol[2n, n]/Sum[t^k, {k, 0, n}];
T[n_] := CoefficientList[P[n] + O[t]^(n^2), t]; T[0] = {1};
T /@ Range[0, 7] // Flatten (* Jean-François Alcover, Feb 16 2021 *)
CROSSREFS
Sequence in context: A152907 A078786 A102677 * A030368 A258383 A037805
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Nov 06 2008
STATUS
approved