Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Feb 16 2021 02:06:32
%S 1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,3,3,4,4,4,4,4,3,3,2,1,
%T 1,1,1,1,1,2,3,4,5,6,7,8,9,9,10,10,9,9,8,7,6,5,4,3,2,1,1,1,1,1,1,2,3,
%U 4,6,7,9,11,13,15,18,19,21,23,24,24,25,24,24,23,21,19,18,15,13,11,9,7,6,4,3
%N Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n such that the difference between the sum of the valley abscissae and number of valleys is k (0 <= k <= (n-1)^2).
%C Row n contains 1+(n-1)^2 entries (n >= 1).
%C Row sums are the Catalan numbers (A000108).
%C Sum_{k=0..(n-1)^2} k*T(n,k) = A145885(n).
%C In the R. Stanley reference one has the equivalent statistic (maj(w) - des(w)) on Dyck words w.
%D R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see p. 236, Exercise 6.34 d.
%H Alois P. Heinz, <a href="/A145884/b145884.txt">Rows n = 0..32, flattened</a>
%F The generating polynomial for row n is P[n](t) = ((1+t)/(1+t^n))*binomial[2n,n]/[n+1], where [n+1]=1+t+t^2+...+t^n and binomial[2n,n] is a Gaussian polynomial.
%e T(4,5)=2 because we have UD.UUD.UDD (2+5-2=5) and UUUDDD.UD (6-1=5); here U=(1,1), D=(1,-1) and each valley is shown by a dot.
%e Triangle starts:
%e 1;
%e 1;
%e 1,1;
%e 1,1,1,1,1;
%e 1,1,1,2,2,2,2,1,1,1;
%e 1,1,1,2,3,3,4,4,4,4,4,3,3,2,1,1,1;
%p br:=proc(n) options operator, arrow: sum(q^i,i=0..n-1) end proc: f:=proc(n) options operator, arrow: product(br(j),j=1..n) end proc: cbr:=proc(n,k) options operator, arrow: f(n)/(f(k)*f(n-k)) end proc: P:=proc(n) options operator, arrow: sort(expand(simplify((q+1)*cbr(2*n, n)/(br(n+1)*(1+q^n))))) end proc: 1; for n to 7 do seq(coeff(P(n),q,k),k=0..(n-1)^2) end do; # yields sequence in triangular form
%t g[k_] := (1 - t^k)/(1 - t);
%t gpol[n_, k_] := If[0 <= k <= n, Product[g[n - j + 1]/g[j], {j, 1, k}], 0];
%t P[n_] := ((1 + t)/(1 + t^n)) gpol[2n, n]/Sum[t^k, {k, 0, n}];
%t T[n_] := CoefficientList[P[n] + O[t]^(n^2), t]; T[0] = {1};
%t T /@ Range[0, 7] // Flatten (* _Jean-François Alcover_, Feb 16 2021 *)
%Y Cf. A000108, A145885.
%K nonn,tabf
%O 0,13
%A _Emeric Deutsch_, Nov 06 2008