login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145885
a(n) = (n-1)^2*binomial(2n,n)/(2*(n+1)).
1
0, 1, 10, 63, 336, 1650, 7722, 35035, 155584, 680238, 2939300, 12584726, 53488800, 225990180, 950094810, 3977737875, 16594533120, 69018792150, 286296636780, 1184823735810, 4893253404000, 20171905282620, 83020426503300
OFFSET
1,3
COMMENTS
a(n) = sum of valley abscissae in all Dyck paths of semilength n minus number of valleys in all Dyck paths of semilength (n). Example: a(3)=10; indeed, the Dyck paths of semilength 3, followed by their valley abscissae are UDUDUD (2,4), UDUUDD (2), UUDDUD (4), UUDUDD (3), UUUDDD ( ); therefore a(3)=2+4+2+4+3 - 5 = 10. Instead of Dyck paths one can consider Dyck words; then sum of valley abscissae corresponds to major index and number of valleys to number of descents.
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see p. 236, Exercise 6.34 d.
FORMULA
a(n) = A002740(n+1) - A002054(n-1) (n >= 2).
a(n) = Sum_{k=0..(n-1)^2} k*A145884(n,k) for n >= 1.
a(n) = (n-1)^2*Cat(n)/2, where Cat(n)=binomial(2n,n)/(n+1)=A000108(n) are the Catalan numbers.
G.f.: 4*z^2*(8*z - 1 + 3*sqrt(1-4*z))/((1 + sqrt(1-4*z))^3*(1-4*z)^(3/2)).
D-finite with recurrence (n+1)*(n-2)^2*a(n) - 2*(2*n-1)*(n-1)^2*a(n-1) = 0. - R. J. Mathar, Aug 10 2017
E.g.f.: (exp(2*x) * ((1 + 2*x) * BesselI(0,2*x) - 2 * (2 - x) * BesselI(1,2*x)) - 1) / 2. - Ilya Gutkovskiy, Nov 03 2021
MAPLE
seq((1/2)*(n-1)^2*binomial(2*n, n)/(n+1), n=1..24);
MATHEMATICA
Table[CatalanNumber[n]*(n - 1)^2/2, {n, 1, 23}] (* Zerinvary Lajos, Jul 08 2009 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Nov 06 2008
STATUS
approved