

A287736


Decimal representation of the diagonal from the corner to the origin of the nth stage of growth of the twodimensional cellular automaton defined by "Rule 334", based on the 5celled von Neumann neighborhood.


4



1, 1, 0, 1, 2, 0, 0, 3, 0, 8, 4, 0, 1, 2, 17, 9, 0, 131, 4, 32, 65, 386, 76, 48, 256, 1664, 64, 92, 1600, 321, 0, 0, 4120, 34712, 6151, 2080, 1024, 17152, 98312, 2096, 0, 8199, 1152, 1136, 35400, 69696, 328257, 132446, 147792, 16400, 4229124, 3342337, 4102
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

Initialized with a single black (ON) cell at stage zero.


REFERENCES

S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.


LINKS

Robert Price, Table of n, a(n) for n = 0..126
Robert Price, Diagrams of first 20 stages
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
S. Wolfram, A New Kind of Science
Wolfram Research, Wolfram Atlas of Simple Programs
Index entries for sequences related to cellular automata
Index to 2D 5Neighbor Cellular Automata
Index to Elementary Cellular Automata
Robert Price, Diagrams of first 20 stages


MATHEMATICA

CAStep[rule_, a_] := Map[rule[[10  #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 334; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1  n, k  1 + n]], {j, k + 1  n, k  1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i  1]], 10], {i, 1, stages  1}]


CROSSREFS

Cf. A287734, A287735, A287737.
Sequence in context: A211871 A194586 A288437 * A180969 A259479 A238343
Adjacent sequences: A287733 A287734 A287735 * A287737 A287738 A287739


KEYWORD

nonn,easy


AUTHOR

Robert Price, May 30 2017


STATUS

approved



