login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326596 Sum of the third largest parts of the partitions of n into 10 parts. 10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 7, 11, 19, 28, 44, 65, 96, 134, 194, 265, 367, 496, 670, 883, 1173, 1521, 1980, 2537, 3248, 4104, 5194, 6488, 8101, 10025, 12387, 15175, 18582, 22570, 27385, 33020, 39745, 47569, 56861, 67602, 80253, 94849, 111914 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,13

LINKS

Table of n, a(n) for n=0..50.

Index entries for sequences related to partitions

FORMULA

a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} j.

a(n) = A326588(n) - A326589(n) - A326590(n) - A326591(n) - A326592(n) - A326593(n) - A326594(n) - A326595(n) - A326597(n) - A326598(n).

MATHEMATICA

Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[j, {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]

CROSSREFS

Cf. A026816, A326588, A326589, A326590, A326591, A326592, A326593, A326594, A326595, A326597, A326598.

Sequence in context: A308931 A308996 A326471 * A170804 A024622 A034337

Adjacent sequences:  A326593 A326594 A326595 * A326597 A326598 A326599

KEYWORD

nonn

AUTHOR

Wesley Ivan Hurt, Jul 13 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 6 22:30 EDT 2020. Contains 335484 sequences. (Running on oeis4.)