login
A326588
Sum of all the parts in the partitions of n into 10 parts.
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 11, 24, 39, 70, 105, 176, 255, 396, 570, 840, 1155, 1650, 2231, 3072, 4100, 5512, 7209, 9520, 12267, 15900, 20243, 25824, 32472, 40936, 50925, 63396, 78144, 96292, 117585, 143600, 173922, 210546, 253184, 304128, 363150
OFFSET
0,11
FORMULA
a(n) = n * Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} 1.
a(n) = n * A026816(n).
a(n) = A326589(n) + A326590(n) + A326591(n) + A326592(n) + A326593(n) + A326594(n) + A326595(n) + A326596(n) + A326597(n) + A326598(n).
MATHEMATICA
Table[n * Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[1, {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 13 2019
STATUS
approved