login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the fourth largest parts of the partitions of n into 10 parts.
10

%I #8 Jul 14 2019 06:32:23

%S 0,0,0,0,0,0,0,0,0,0,1,1,2,3,6,9,15,22,35,50,75,103,149,202,281,376,

%T 510,669,889,1149,1499,1913,2453,3093,3917,4886,6106,7544,9330,11419,

%U 13989,16979,20614,24837,29912,35785,42790,50857,60399,71360,84233,98952

%N Sum of the fourth largest parts of the partitions of n into 10 parts.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} k.

%F a(n) = A326588(n) - A326589(n) - A326590(n) - A326591(n) - A326592(n) - A326593(n) - A326594(n) - A326596(n) - A326597(n) - A326598(n).

%t Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[k, {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]

%Y Cf. A026816, A326588, A326589, A326590, A326591, A326592, A326593, A326594, A326596, A326597, A326598.

%K nonn

%O 0,13

%A _Wesley Ivan Hurt_, Jul 13 2019