The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A306909 Primes p such that Omega(p + 1)^(p - 1) == 1 (mod p^2), where Omega is A001222. 0
 2, 11, 1093, 3511, 20771, 534851, 1006003, 3152573 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(9) > 807795277 if it exists. a(9) > 3.5*10^12 if it exists. - Giovanni Resta, Apr 09 2019 LINKS Table of n, a(n) for n=1..8. EXAMPLE A001222(20772) = 5 and 5^(20771-1) == 1 (mod 20771^2), so 20771 is a term of the sequence. MATHEMATICA Select[Prime@ Range@ 230000, PowerMod[ PrimeOmega[# + 1], #-1, #^2] == 1 &] (* Giovanni Resta, Apr 09 2019 *) PROG (PARI) forprime(p=1, , if(Mod(bigomega(p+1), p^2)^(p-1)==1, print1(p, ", "))) CROSSREFS Cf. A001220, A001222, A260377, A267487. Sequence in context: A365098 A157033 A011825 * A084673 A034388 A131316 Adjacent sequences: A306906 A306907 A306908 * A306910 A306911 A306912 KEYWORD nonn,hard,more AUTHOR Felix Fröhlich, Mar 16 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 2 21:05 EDT 2024. Contains 374875 sequences. (Running on oeis4.)