login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of unlabeled distributive lattices on n nodes.
(Formerly M0700)
9

%I M0700 #56 Sep 18 2021 08:56:15

%S 1,1,1,1,2,3,5,8,15,26,47,82,151,269,494,891,1639,2978,5483,10006,

%T 18428,33749,62162,114083,210189,386292,711811,1309475,2413144,

%U 4442221,8186962,15077454,27789108,51193086,94357143,173859936,320462062,590555664,1088548290,2006193418,3697997558,6815841849,12563729268,23157428823,42686759863,78682454720,145038561665,267348052028,492815778109,908414736485

%N Number of unlabeled distributive lattices on n nodes.

%D P. D. Lincoln, personal communication.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Jukka Kohonen, <a href="/A006982/b006982.txt">Table of n, a(n) for n = 0..60</a>

%H R. Belohlavek and V. Vychodil, <a href="http://belohlavek.inf.upol.cz/publications/BeVy_Rls12.pdf">Residuated lattices of size <=12</a>, Order 27 (2010) 147-161, Table 6; DOI:<a href="https://doi.org/10.1007/s11083-010-9143-7">10.1007/s11083-010-9143-7</a>; <a href="https://math.chapman.edu/~jipsen/finitestructures/cirl/reslat12.pdf">Extended version</a>.

%H Aaron Chan, Erik Darpö, Osamu Iyama, and René Marczinzik, <a href="https://arxiv.org/abs/2012.11927">Periodic trivial extension algebras and fractionally Calabi-Yau algebras</a>, arXiv:2012.11927 [math.RT], 2020.

%H M. Erné, J. Heitzig and J. Reinhold, <a href="https://doi.org/10.37236/1641">On the number of distributive lattices</a>, Electronic Journal of Combinatorics, 9 (2002), #R24.

%H D. J. Greenhoe, <a href="https://peerj.com/preprints/520v1.pdf">MRA-Wavelet subspace architecture for logic, probability, and symbolic sequence processing</a>, 2014.

%H J. Heitzig and J. Reinhold, <a href="http://dx.doi.org/10.1023/A:1006431609027">The number of unlabeled orders on fourteen elements</a>, Order 17 (2000) no. 4, 333-341.

%H J. Heitzig and J. Reinhold, <a href="http://www-ifm.math.uni-hannover.de/forschung/preprintsifm.html">Counting finite lattices</a>, preprint no. 298, Institut für Mathematik, Universität Hanover, Germany, 1999.

%H J. Heitzig and J. Reinhold, <a href="http://dx.doi.org/10.1007/PL00013837">Counting finite lattices</a>, Algebra Universalis, 48 (2002), 43-53.

%H Institut f. Mathematik, Univ. Hanover, <a href="http://www-ifm.math.uni-hannover.de/html/preprints.phtml">Erne/Heitzig/Reinhold papers</a>

%H P. Jipsen, <a href="https://math.chapman.edu/~jipsen/tikzsvg/planar-distributive-lattices15.html">Planar distributive lattices up to size 15</a> (illustration of a(1..15)), personal web page, March 2014.

%H P. Jipsen and N. Lawless, <a href="http://math.chapman.edu/~jipsen/preprints/JipsenLawlessModularLattices20130905.pdf">Generating all finite modular lattices of a given size</a>, 2013.

%H Jukka Kohonen, <a href="https://doi.org/10.1007/s11083-021-09569-0">Cartesian lattice counting by the vertical 2-sum</a>, Order (2021); see also on <a href="https://arxiv.org/abs/2007.03232">arXiv</a>, arXiv:2007.03232 [math.CO], 2020.

%Y Cf. A006981, A006966, A343161.

%K hard,nonn,nice

%O 0,5

%A _N. J. A. Sloane_

%E More terms from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Feb 02 2001. These were computed by the same algorithm that was used to enumerate the posets on 14 elements.