Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #71 Dec 22 2023 12:11:25
%S 1,2,6,15,31,56,92,141,205,286,386,507,651,820,1016,1241,1497,1786,
%T 2110,2471,2871,3312,3796,4325,4901,5526,6202,6931,7715,8556,9456,
%U 10417,11441,12530,13686,14911,16207,17576,19020,20541,22141,23822
%N a(n) = (n + 2)*(2*n^2 - n + 3)/6.
%C Hankel transform of A030238. - _Paul Barry_, Oct 16 2007
%C Equals (1, 2, 3, 4, 5, ...) convolved with (1, 0, 3, 5, 7, 9, ...). - _Gary W. Adamson_, Jul 31 2010
%C a(n) equals n!^2 times the determinant of the n X n matrix whose (i,j)-entry is 1 + KroneckerDelta[i, j] (-1 + (1 + i^2)/i^2). - _John M. Campbell_, May 20 2011
%C Positions of ones in A253903 (with offset 1). - _Harvey P. Dale_, Mar 05 2015
%H Vincenzo Librandi, <a href="/A056520/b056520.txt">Table of n, a(n) for n = 0..1000</a>
%H Kassie Archer, Ethan Borsh, Jensen Bridges, Christina Graves, and Millie Jeske, <a href="https://arxiv.org/abs/2312.05145">Cyclic permutations avoiding patterns in both one-line and cycle forms</a>, arXiv:2312.05145 [math.CO], 2023. See p. 2.
%H Guo-Niu Han, <a href="/A196265/a196265.pdf">Enumeration of Standard Puzzles</a>, 2011. [Cached copy]
%H Guo-Niu Han, <a href="https://arxiv.org/abs/2006.14070">Enumeration of Standard Puzzles</a>, arXiv:2006.14070 [math.CO], 2020.
%H Amit Kumar Singh, Akash Kumar and Thambipillai Srikanthan, <a href="http://www.ece.nus.edu.sg/stfpage/eleak/pdf/akumar_todaes_2012.pdf">Accelerating Throughput-aware Run-time Mapping for Heterogeneous MPSoCs</a>, ACM Transactions on Design Automation of Electronic Systems, 2012. - From _N. J. A. Sloane_, Dec 25 2012
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F a(n) = a(n-1) + n^2.
%F a(n) = A000330(n) + 1.
%F G.f.: (1 - 2*x + 4*x^2 - x^3)/(1 - x)^4. - _Paul Barry_, Apr 14 2010
%F Let b(0) = b(1) = 1, b(n) = max(b(n-1) + (n - 1)^2, b(n-2) + (n - 2)^2) for n >= 2; then a(n) = b(n+1). - _Yalcin Aktar_, Jul 28 2011
%t a[n_] := (n+2)*(2*n^2-n+3)/6; Table[a[n], {n, 0, 100}] (* _Vladimir Joseph Stephan Orlovsky_, Dec 17 2008 *)
%t s = 1; lst = {s}; Do[s += n^2; AppendTo[lst, s], {n, 1, 41, 1}]; lst (* _Zerinvary Lajos_, Jul 12 2009 *)
%t Table[n!^2*Det[Array[KroneckerDelta[#1,#2](((#1^2+1)/(#1^2))-1)+1&,{n,n}]],{n,1,20}] (* _John M. Campbell_, May 20 2011 *)
%t FoldList[#1 + #2^2 &, 1, Range@ 40] (* _Robert G. Wilson v_, Oct 28 2011 *)
%o (Magma) [(n+2)*(2*n^2-n+3)/6: n in [0..40]]; // _Vincenzo Librandi_, May 24 2011
%o (PARI) a(n)=(n+2)*(2*n^2-n+3)/6 \\ _Charles R Greathouse IV_, Jul 02 2013
%Y Cf. A000330, A153056, A153057, A153058, A179904.
%Y Cf. A030238, A253903.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Laura Kasavan (maui12129(AT)cswebmail.com), Aug 26 2000