

A086893


a(n) is the index of F(n+1) at the unique occurrence of the ordered pair of reversed consecutive terms (F(n+1),F(n)) in Stern's diatomic sequence A002487, where F(k) denotes the kth term of the Fibonacci sequence A000045.


11



1, 3, 5, 13, 21, 53, 85, 213, 341, 853, 1365, 3413, 5461, 13653, 21845, 54613, 87381, 218453, 349525, 873813, 1398101, 3495253, 5592405, 13981013, 22369621, 55924053, 89478485, 223696213, 357913941, 894784853, 1431655765, 3579139413
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

If the Fibonacci pairs are kept in the natural order (F(n),F(n+1)), it appears that the first term of the pair occurs in A002487 at the index given by A061547(n).
Equals row sums of triangle A177954.  Gary W. Adamson, May 15 2010
Starting at n=3, begin subtracting from (2^(n1)1)/2^(n1): 3/4  1/2 = 1/4 with 1+4=5=a(3); 7/8  1/4 = 5/8 with 5+8=13=a(4); 15/16  5/8 = 5/16 with 5+16=21= a(5); 31/32  5/16 = 21/32 with 21+32=53=a(6); 63/64  21/32 = 21/64 with 21+64=85=a(7) and so on. For n odd in the first fraction (2^(n1)1)/2^(n1), the result approaches 1/3, and for n even in the first fraction, the result approaches 2/3.  J. M. Bergot, May 08 2015
Also, the decimal representation of the xaxis, from the left edge to the origin, of the nth stage of growth of the twodimensional cellular automaton defined by "Rule 678", based on the 5celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. See A283641.  Robert Price, Mar 12 2017


LINKS

Table of n, a(n) for n=1..32.
A. J. Macfarlane, Generating functions for integer sequences defined by the evolution of cellular automata..., Fig. 12.


FORMULA

It appears that a(n)=(4^((n+1)/2)1)/3 if n is odd and a(n)=(a(n1)+a(n+1))/2 if n is even.
G.f.: (1+2*x2*x^2)/((1x)*(14*x^2)); a(n) = 2^(n1)(3(1)^n/3)1/3 (offset 0); a(n) = Sum{k=0..n+1, 4^floor(k/2)/2} (offset 0); a(2n) = A002450(n+1) (offset 0); a(2n+1) = A072197(n) (offset 0).  Paul Barry, May 21 2004
a(n+2) = 4*a(n) + 1, a(1) = 1, a(2) = 3, n > 0.  Yosu Yurramendi, Mar 07 2017
a(n+1) = a(n) + A158302(n), a(1) = 1, n > 0.  Yosu Yurramendi, Mar 07 2017


EXAMPLE

A002487 begins 0,1,1,2,1,3,2,... with offset 0. Thus a(1)=1 since (F(2),F(1)) = (1,1) occurs at term 1 of A002487. Similarly, a(2)=3 and a(3)=5, since (F(3),F(2))=(2,1) occurs at term 3 and (F(4),F(3))=(3,2) at term 5 of A002487.


MATHEMATICA

f[n_] := Module[{a = 1, b = 0, m = n}, While[m > 0, If[OddQ@ m, b = a + b, a = a + b]; m = Floor[m/2]]; b]; a = Table[f[n], {n, 0, 10^6}]; b = Reverse /@ Partition[Map[Fibonacci, Range[Ceiling@ Log[GoldenRatio, Max@ a] + 1]], 2, 1]; Map[If[Length@ # > 0, #[[1, 1]]  1, 0] &@ SequencePosition[a, #] &, b] (* Michael De Vlieger, Mar 15 2017, Version 10.1, after JeanFrançois Alcover at A002487 *)


PROG

(PARI) a(n)=if(n%2, 2^(n+1), 2^(n+1)+2^(n1))\3 \\ Charles R Greathouse IV, May 08 2015
(MAGMA) [2^(n1)*(3(1)^n/3)1/3: n in [0..35]]; // Vincenzo Librandi, May 09 2015


CROSSREFS

Cf. A000045, A002450, A002487, A061547, A072197, A077954, A283641.
Sequence in context: A283583 A283701 A284538 * A284425 A284546 A283646
Adjacent sequences: A086890 A086891 A086892 * A086894 A086895 A086896


KEYWORD

nonn,easy


AUTHOR

John W. Layman, Sep 18 2003


EXTENSIONS

More terms from Paul Barry, May 21 2004


STATUS

approved



