login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A284546
Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 998", based on the 5-celled von Neumann neighborhood.
4
1, 3, 5, 13, 21, 53, 85, 213, 341, 853, 1365, 3421, 5469, 13645, 21885, 54717, 87421, 218621, 349693, 876029, 1395709, 3505661, 5586941, 14016509, 22396925, 55967741, 89522173, 224264189, 357302269, 897449981, 1430257661, 3588227069, 5733613565, 14327742461
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Chai Wah Wu, May 06 2024: (Start)
a(n) = a(n-1) + 256*a(n-8) - 256*a(n-9) for n > 25.
G.f.: (-16384*x^25 + 8192*x^24 + 24576*x^23 - 28160*x^22 + 16896*x^21 - 4608*x^20 + 128*x^17 - 64*x^16 + 64*x^15 + 48*x^14 - 16*x^13 + 8*x^11 - 128*x^8 + 128*x^7 + 32*x^6 + 32*x^5 + 8*x^4 + 8*x^3 + 2*x^2 + 2*x + 1)/(256*x^9 - 256*x^8 - x + 1). (End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 998; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 2], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 28 2017
STATUS
approved