login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077953
Expansion of 1/(1-x+2*x^2-2*x^3).
9
1, 1, -1, -1, 3, 3, -5, -5, 11, 11, -21, -21, 43, 43, -85, -85, 171, 171, -341, -341, 683, 683, -1365, -1365, 2731, 2731, -5461, -5461, 10923, 10923, -21845, -21845, 43691, 43691, -87381, -87381, 174763, 174763, -349525, -349525, 699051, 699051, -1398101, -1398101, 2796203, 2796203, -5592405
OFFSET
0,5
COMMENTS
Essentially the same as A077980.
FORMULA
From Reinhard Zumkeller, Oct 07 2008: (Start)
a(n+1) = a(n) - 2*a(n-1) + 2*a(n-2).
a(n) = A077925(floor(n/2)-1) for n>1. (End)
MAPLE
seq(coeff(series(1/(1-x+2*x^2-2*x^3), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Aug 07 2019
MATHEMATICA
CoefficientList[Series[1/(1-x+2x^2-2x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{1, -2, 2}, {1, 1, -1}, 50] (* Harvey P. Dale, Aug 27 2014 *)
PROG
(PARI) Vec(1/(1-x+2*x^2-2*x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 25 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1-x+2*x^2-2*x^3) )); // G. C. Greubel, Aug 07 2019
(Sage) (1/(1-x+2*x^2-2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Aug 07 2019
(GAP) a:=[1, 1, -1];; for n in [4..50] do a[n]:=a[n-1]-2*a[n-2]+2*a[n-3]; od; a; # G. C. Greubel, Aug 07 2019
CROSSREFS
Cf. A077980.
Cf. A007420, A077925. - Reinhard Zumkeller, Oct 07 2008
Sequence in context: A124115 A124114 A077893 * A077980 A286759 A146245
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002, Jun 17 2007
STATUS
approved