login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007420 Berstel sequence: a(n+1) = 2a(n) - 4a(n-1) + 4a(n-2).
(Formerly M0030)
4
0, 0, 1, 2, 0, -4, 0, 16, 16, -32, -64, 64, 256, 0, -768, -512, 2048, 3072, -4096, -12288, 4096, 40960, 16384, -114688, -131072, 262144, 589824, -393216, -2097152, -262144, 6291456, 5242880, -15728640, -27262976, 29360128, 104857600, -16777216 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

a(n) = 0 only for n = 0,1,4,6,13 and 52. [Cassels, following Mignotte. See also Beukers] - N. J. A. Sloane, Aug 29 2010

REFERENCES

J. W. S. Cassels, Local Fields, Cambridge, 1986, see p. 67.

G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 28.

M. Mignotte, Suites recurrentes lineaires, Sem. Delange-Pisot-Poitou, 15th year (1973/1974), No. 14, 9 pages.

J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 193.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..500

F. Beukers, The zero-multiplicity of ternary recurrences, Compositio Math. 77 (1991), 165-177.

Daniel Birmajer, Juan B. Gil, Michael D. Weiner, Linear recurrence sequences with indices in arithmetic progression and their sums, arXiv:1505.06339 [math.NT], 2015.

G. Myerson and A. J. van der Poorten, Some problems concerning recurrence sequences, Amer. Math. Monthly 102 (1995), no. 8, 698-705.

Index entries for linear recurrences with constant coefficients, signature (2, -4, 4).

FORMULA

G.f.: x^2/(1-2*x+4*x^2-4*x^3).

a(0)=0, a(1)=0, a(2)=1, a(n) = 2*a(n-1)-4*a(n-2)+4*a(n-3). - Harvey P. Dale, Jun 24 2015

MAPLE

A007420 := proc(n) options remember; if n <=1 then 0 elif n=2 then 1 else 2*A007420(n-1)-4*A007420(n-2)+4*A007420(n-3); fi; end;

MATHEMATICA

a[0] = a[1] = 0; a[2] = 1; a[n_] := a[n] = 2*a[n - 1] - 4*a[n - 2] + 4*a[n - 3]; a /@ Range[0, 34] (* Jean-Fran├žois Alcover, Apr 06 2011 *)

LinearRecurrence[{2, -4, 4}, {0, 0, 1}, 40] (* Harvey P. Dale, Oct 24 2011 *)

Table[RootSum[-4 + 4 # - 2 #^2 + #^3 &, 6 #^n - #^(n + 1) + 4 #^(n + 1) &]/44, {n, 0, 20}] (* Eric W. Weisstein, Nov 09 2017 *)

PROG

(Haskell)

a007420 n = a007420_list !! n

a007420_list = 0 : 0 : 1 : (map (* 2) $ zipWith (+) (drop 2 a007420_list)

   (map (* 2) $ zipWith (-) a007420_list (tail a007420_list)))

-- Reinhard Zumkeller, Oct 21 2011

(MAGMA) I:=[0, 0, 1]; [n le 3 select I[n]  else 2*Self(n-1)-4*Self(n-2)+4*Self(n-3): n in [1..70]]; // Vincenzo Librandi, Oct 05 2015

(PARI) a(n)=([0, 1, 0; 0, 0, 1; 4, -4, 2]^n*[0; 0; 1])[1, 1] \\ Charles R Greathouse IV, Feb 19 2017

CROSSREFS

Cf. A035302, A077953.

Sequence in context: A265829 A022896 A100225 * A019219 A019139 A285774

Adjacent sequences:  A007417 A007418 A007419 * A007421 A007422 A007423

KEYWORD

sign,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 06:26 EST 2019. Contains 329968 sequences. (Running on oeis4.)