login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022896 Number of solutions to c(1)*prime(1) + ... + c(n)*prime(n) = 2, where c(i) = +-1 for i>1, c(1) = 1. 9
1, 0, 0, 0, 0, 0, 2, 0, 4, 0, 14, 0, 38, 0, 126, 0, 394, 0, 1290, 0, 4344, 0, 14846, 0, 51068, 0, 178436, 0, 634568, 0, 2261052, 0, 8067296, 0, 29031484, 0, 105251904, 0, 383580180, 0, 1404666680, 0, 5171079172, 0, 19141098744, 0, 71125205900, 0, 263549059326 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,7

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..500

FORMULA

a(2n-1) = A113041(n) - A261057(n), a(2n) = 0 because there is an odd number of odd terms on the left hand side, but the right hand side is even. - M. F. Hasler, Aug 09 2015

EXAMPLE

a(7) counts these 2 solutions: {2, -3, -5, -7, 11, -13, 17}, {2, 3, 5, 7, -11, 13, -17}.

MATHEMATICA

{f, s} = {1, 2}; Table[t = Map[Prime[# + f - 1] &, Range[2, z]]; Count[Map[Apply[Plus, #] &, Map[t # &, Tuples[{-1, 1}, Length[t]]]], s - Prime[f]], {z, 22}]

(* A022896, a(n) = number of solutions of "sum = s" using Prime(f) to Prime(f+n-1) *)

n = 7; t = Map[Prime[# + f - 1] &, Range[n]]; Map[#[[2]] &, Select[Map[{Apply[Plus, #], #} &, Map[t # &, Map[Prepend[#, 1] &, Tuples[{-1, 1}, Length[t] - 1]]]], #[[1]] == s &]] (* the 2 solutions of using n=7 primes; Peter J. C. Moses, Oct 01 2013 *)

PROG

(PARI) A022896(n, rhs=2, firstprime=1)={rhs-=prime(firstprime); my(p=vector(n-1, i, prime(i+firstprime))); !(rhs||#p)+sum(i=1, 2^#p-1, sum(j=1, #p, (-1)^bittest(i, j-1)*p[j])==rhs)} \\ For illustrative purpose, too slow for n >> 20. - M. F. Hasler, Aug 08 2015

(PARI) a(n, s=2-prime(1), p=1)={if(n<=s, if(s==p, n==s, a(abs(n-p), s-p, precprime(p-1))+a(n+p, s-p, precprime(p-1))), if(s<=0, if(n>1, a(abs(s), sum(i=p+1, p+n-1, prime(i)), prime(p+n-1)), !s)))} \\ M. F. Hasler, Aug 09 2015

CROSSREFS

Cf. A022894 (r.h.s. = 0), A022895 (r.h.s. = 1), A022897, ..., A022904, A022920 (using primes >= 7), A083309; A261061 - A261063 and A261045 (r.h.s. = -1); A261057, A261059, A261060 and A261044 (r.h.s. = -2); A113040, A113041, A113042. - M. F. Hasler, Aug 08 2015

Sequence in context: A286122 A286776 A265829 * A100225 A007420 A019219

Adjacent sequences: A022893 A022894 A022895 * A022897 A022898 A022899

KEYWORD

nonn

AUTHOR

Clark Kimberling

EXTENSIONS

Corrected and extended by Clark Kimberling, Oct 01 2013

a(23)-a(49) from Alois P. Heinz, Aug 06 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 19:41 EST 2022. Contains 358543 sequences. (Running on oeis4.)