login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022898
Number of solutions to c(1)*prime(2)+...+c(n)*prime(n+1) = 1, where c(i) = +-1 for i > 1, c(1) = 1.
1
0, 0, 1, 0, 0, 0, 3, 0, 2, 0, 14, 0, 40, 0, 97, 0, 323, 0, 1252, 0, 3808, 0, 14298, 0, 46256, 0, 171281, 0, 591786, 0, 2158580, 0, 7725607, 0, 27804271, 0, 99859607, 0, 368197850, 0, 1352006460, 0, 4981076329, 0, 18492738212, 0, 68481571926, 0, 254616154516, 0
OFFSET
1,7
LINKS
FORMULA
a(n) = [x^2] Product_{k=3..n+1} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 26 2024
EXAMPLE
a(7) counts these 3 solutions: {3, -5, 7, 11, -13, 17, -19}, {3, 5, -7, -11, 13, 17, -19}, {3, 5, -7, 11, -13, -17, 19}.
MATHEMATICA
{f, s} = {2, 1}; Table[t = Map[Prime[# + f - 1] &, Range[2, z]]; Count[Map[Apply[Plus, #] &, Map[t # &, Tuples[{-1, 1}, Length[t]]]], s - Prime[f]], {z, 22}]
(* A022898, a(n) = number of solutions of "sum = s" using Prime(f) to Prime(f+n-1) *)
n = 7; t = Map[Prime[# + f - 1] &, Range[n]]; Map[#[[2]] &, Select[Map[{Apply[Plus, #], #} &, Map[t # &, Map[Prepend[#, 1] &, Tuples[{-1, 1}, Length[t] - 1]]]], #[[1]] == s &]] (* the 3 solutions of using n=7 primes; Peter J. C. Moses, Oct 01 2013 *)
PROG
(PARI) padbin(n, len) = {if (n, b = binary(n), b = [0]); while(length(b) < len, b = concat(0, b); ); b; }
a(n) = {nbs = 0; for (i = 2^(n-1), 2^n-1, vec = padbin(i, n); if (sum(k=1, n, if (vec[k], prime(k+1), -prime(k+1))) == 1, nbs++); ); nbs; } \\ Michel Marcus, Sep 30 2013
CROSSREFS
Sequence in context: A344209 A171759 A073538 * A072780 A124452 A351532
KEYWORD
nonn
EXTENSIONS
Corrected and extended by Clark Kimberling, Oct 01 2013
a(23)-a(50) from Alois P. Heinz, Aug 06 2015
STATUS
approved