Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jan 27 2024 20:28:18
%S 0,0,1,0,0,0,3,0,2,0,14,0,40,0,97,0,323,0,1252,0,3808,0,14298,0,46256,
%T 0,171281,0,591786,0,2158580,0,7725607,0,27804271,0,99859607,0,
%U 368197850,0,1352006460,0,4981076329,0,18492738212,0,68481571926,0,254616154516,0
%N Number of solutions to c(1)*prime(2)+...+c(n)*prime(n+1) = 1, where c(i) = +-1 for i > 1, c(1) = 1.
%H Alois P. Heinz, <a href="/A022898/b022898.txt">Table of n, a(n) for n = 1..500</a>
%F a(n) = [x^2] Product_{k=3..n+1} (x^prime(k) + 1/x^prime(k)). - _Ilya Gutkovskiy_, Jan 26 2024
%e a(7) counts these 3 solutions: {3, -5, 7, 11, -13, 17, -19}, {3, 5, -7, -11, 13, 17, -19}, {3, 5, -7, 11, -13, -17, 19}.
%t {f, s} = {2, 1}; Table[t = Map[Prime[# + f - 1] &, Range[2, z]]; Count[Map[Apply[Plus, #] &, Map[t # &, Tuples[{-1, 1}, Length[t]]]], s - Prime[f]], {z, 22}]
%t (* A022898, a(n) = number of solutions of "sum = s" using Prime(f) to Prime(f+n-1) *)
%t n = 7; t = Map[Prime[# + f - 1] &, Range[n]]; Map[#[[2]] &, Select[Map[{Apply[Plus, #], #} &, Map[t # &, Map[Prepend[#, 1] &, Tuples[{-1, 1}, Length[t] - 1]]]], #[[1]] == s &]] (* the 3 solutions of using n=7 primes; _Peter J. C. Moses_, Oct 01 2013 *)
%o (PARI) padbin(n, len) = {if (n, b = binary(n), b = [0]); while(length(b) < len, b = concat(0, b);); b;}
%o a(n) = {nbs = 0; for (i = 2^(n-1), 2^n-1, vec = padbin(i, n); if (sum(k=1, n, if (vec[k], prime(k+1), -prime(k+1))) == 1, nbs++);); nbs;} \\ _Michel Marcus_, Sep 30 2013
%K nonn
%O 1,7
%A _Clark Kimberling_
%E Corrected and extended by _Clark Kimberling_, Oct 01 2013
%E a(23)-a(50) from _Alois P. Heinz_, Aug 06 2015