login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022899
Number of solutions to c(1)*prime(2) + ... + c(n)*prime(n+1) = 2, where c(i) = +-1 for i > 1, c(1) = 1.
3
0, 0, 0, 1, 0, 0, 0, 4, 0, 9, 0, 14, 0, 75, 0, 155, 0, 724, 0, 2376, 0, 6900, 0, 26937, 0, 92823, 0, 326942, 0, 1156399, 0, 3960856, 0, 14320442, 0, 53136802, 0, 190397836, 0, 706309816, 0, 2596474887, 0, 9540434672, 0, 35480735090, 0, 132003300757, 0
OFFSET
1,8
LINKS
FORMULA
a(n) = [x^1] Product_{k=3..n+1} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 26 2024
EXAMPLE
a(8) counts these 4 solutions: {3, -5, -7, 11, -13, 17, 19, -23}, {3, -5, -7, 11, 13, -17, -19, 23}, {3, -5, 7, -11, -13, 17, -19, 23}, {3, 5, -7, -11, -13, -17, 19, 23}.
MATHEMATICA
{f, s} = {2, 2}; Table[t = Map[Prime[# + f - 1] &, Range[2, z]]; Count[Map[Apply[Plus, #] &, Map[t # &, Tuples[{-1, 1}, Length[t]]]], s - Prime[f]], {z, 22}]
(* A022899, a(n) = number of solutions of "sum = s" using Prime(f) to Prime(f+n-1) *)
n = 8; t = Map[Prime[# + f - 1] &, Range[n]]; Map[#[[2]] &, Select[Map[{Apply[Plus, #], #} &, Map[t # &, Map[Prepend[#, 1] &, Tuples[{-1, 1}, Length[t] - 1]]]], #[[1]] == s &]] (* the 4 solutions of using n=8 primes; Peter J. C. Moses, Oct 01 2013 *)
CROSSREFS
Sequence in context: A241667 A259258 A291716 * A364101 A081148 A306954
KEYWORD
nonn
EXTENSIONS
Corrected and extended by Clark Kimberling, Oct 01 2013
a(23)-a(49) from Alois P. Heinz, Aug 06 2015
STATUS
approved